UNIT 2

(Contents : Linear spaces, Dimension of a linear space, Normed linear space (NLS),
Banach space, C[a,b] as a Banach space, Quotient space of a NLS, Convex sets,
their algebra, Bounded linear operator; its continuity, Unbounded linear operator,
Norm ||T|| of a bounded linear operator T, Formulae for ||T]|.)

§ 2.1 LINEAR SPACES

Definition 2.1.1. Let R (q) denote the field of reals (complex numbers) that are
also called scalars. A linear space (Vector space) J is a collection of objects called
vectors satistying following conditions :

I. Vs additively an Abelian (commutative) Group, the identity element of which
is called the Zero vector denoted by 0.

II. For every pair (o v), o being a scalar and v € V] there is a vector, denoted by
o.v (not vav), called a scalar multiple of v such that

(@) lv=vy forallve V.

(b) a. (u+v)=au+a.v for all scalars « and for all vectors u,vel) .

(¢) (+pB)v=av+ By for all scalars & and S and for all vectors ye] .

(d) a.(Bv)=(a.B)v for all scalars o and £ and for all ye}” .

Example 2.1.1. Let R” be the collection of all » tuples of reals like
x =(x,%,,..x,); X; being reals. Then R" becomes a linear space with real scalar
field where addition of vectors and scalar multiplication of vectors are defined as

X+y=00,%,. %) TV, V2500 V) = (X + )1, Xy + ¥,., X, +Y,) and

ax=a(x,x,..,x,)=(@x,ax,,..ax,);x,y € R" and o any real scalar.

Here R is also called Euclidean n-space with the zero vector 0 =(0,0,...,0) (all
co-ordinates are zero), and it is a real Linear space.

Example 2.1.2. Let C[a,b] denote the collection of all real valued continuous
functions over a closed interval [a,b]. Then C[a,b] is a real linear space (associated
scalar field being that of reals) where vector sum and scalar multiplication are defined
as under :

(f+8))=f)+g(); a<t<b, and f,geC(la,b]
and (af)t)=af({t) ; a<t<b and o any real scalar.
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As we know that sum of two continuous functions is a continuous function and
so 1s a scalar multiple of a continuous function, we see that f+g and of are members
of Cla,b] where f,g e (Cla,b] and o is any scalar. Here the zero vector equals to the
zero function (O(l) =0,a<t< b) over the closed interval [a,b].

There are many other linear spaces like the sequence spaces /,(1< p <),

polynomial space p[a,b], function space I,[a,b], that we encounter in our discussion
to follow.

Definition 2.1.2. (a) If 4 and B are subsets of a linear space } then
A+B={a+b:acAand be B}.

(b) For any scalar A,

AA={Aa aec 4}

The subset 4—B=A4+(-1)B; and taking A = zero scalar we find 04 ={0}.
Further we see that A + B =B + A, because vector addition is commutative, However
A—-B =+ B— A Taking 4 and B as singleton and 4 ={(1,0)}, B={(0,0} in Euclidean
2-space R°, we find A—B={(1,0)} and B—A={(-10)}.

Further for any scalar oo we have a4 ={aa:ac A}.

Here is a caution. In general, 4+ 4#24.

Because take 4=1{(1,0), (0,1)}; Then we have

24={(2,0),(0,2)} which is not equal to 4+4
where A+ A={(2,0),(0,2),(1,1)}.

Given a fixed member ae€)’, the subset a+B={a+b:beB} is called a
translate of B.

§ 2.2. Let X denote a linear space over reals/complex scalars. Given x;,Xx,,....,x,, in
X, and o,,,...,a, as scalars, the vector o;x +a,x, +.....+,x, of X is called a
linear combination of x,x,,....,x,,.
A subset £ of X is said to span (generate) X if and only if every member of X is
a linear combination of some elements of F.
Elements x;,x,,....,x, of I are said to be linearly dependent if and only if there
are corresponding number of scalars «;,,,....,«, not all zero such that

X Xy +....ta,x, =0
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A finite number of elements x;,x,,...,x; of X are said to be linearly independent

if they are not linearly dependent. This amounts to say that if

k
Zaixi =0 implies o =, =...=; = 0.
i=1

An arbitrary system of elements of X is called linearly independent if every
finite subset of the given system becomes linearly independent.

Observe that if a set of vectors in X contains a linearly dependent subset, whole
set becomes linearly dependent. Also note that a linearly independent set of vectors
does not contain the zero vector.

Definition 2.2.1. A non-empty sub-set L of a linear space X is called a sub-
space of X if x + y is in L whenever x and y are both in , and also ox is in Z,
whenever x is in L and o is any scalar.

Example 2.2.1. Let § be any non-empty subset of X. Let L = the set of all linear
combinations of elements of S. Then L is sub-space of X, called the sub-space spanned
(generated) by S.

The subset = {0} is a sub-space, called the Null-space.

Theorem 2.2.1. Let x;,x,,....,x, be a set of vectors of X with x; # 0. This set
is linearly dependent if and only if some one of vectors x,,...,x,, say x; is in the
sub-space generated by x;,X,,...,X;_;.

Proof : Suppose the given set of vectors is linearly dependent. There is a smallest
k with 2<k<p such that x,x,,.,x, is linearly dependent; and we have
a X +ayX, +....+ax, =0 with not all o’s are zero scalars. Necessarily, we have
a; #0; otherwise x;,x,,....,x;_; would form a linearly dependent set.

I _ 2] o
n consequence X = ——Xx; ——=X; —...———X;_; .
1247 1247 1247

That means x; is in the sub-space generated by Xj,X,,...,X;_.
Conversely, if one assumes that some x; is in the sub-space generated by

X|, X5,..., X;_; ; then we have

X = B+ By + o+ Bl Xy
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That means x;,x,,...,x; are linearly dependent, and in turn we have the set
(x1,%,,...,x;) as linearly dependent.

Definition 2.2.2. In a linear space X suppose there is a +ve integer » such that X
contains a set of n vectors that are linearly independent, while every set of n + 1
vectors in X is linearly dependent, then X is called finite dimensional and n is
called dimension of X {Dim(X)}.

The Null-space is finite dimensional of dimension 0.

If X is not finite dimensional it is called infinite dimensional.

Definition 2.2.3. A finite set B in linear space X is called a basis of X if B is
linearly independent, and f the sub-space spanned (generated) by B is all of X.

Explanation : If x,x,,..,x, 1s a basis for X, every member yc X can be

expressed as x =X +Q,x, +....+, X, where scalar coefficients ¢;’s are uniquely
determined; so x does not have a different linear combination of basis members.

Suppose Dim(X)=n (n>1). Then X has a basis consisting of # members; For,
X certainly contains vectors X, X,,..., X, that form a linearly independent set. Now
for any member y c X, the set of vectors x,x,,...,x, plusxu of n + 1 vectors must
be linearly dependent. Now Theorem 2.2.1 applies to conclude that x is in the sub-
space generated by x;,x,,...,x,. Hence x;,x,,...,x, form a basis of X.

§ 2.3 NORMED LINEAR SPACES :

Definition 2.3.1. A linear space X is called a Normed Linear Space (NLS) if
there is a non-negative real valued function denoted by || ||, called a norm on X
whose value at x € X denoted by || x || satisfies following conditions (N.1) — (N.3),
called norm axioms :—

(N.1)  ||x]||=0, and ||x]||=0 if and only if x=0.
(N.2) Jax||=|a]||x]|| for any scalar o and for any x€ X .

(N3)  |[x+y|[<|lx||+]|y]| for any two members x and y in X.

If || || is a norm on X, the ordered pair (X, || ||) is designated as a NLS. If norm
changes, NLS also changes.

Ina NLS (X, || ||) one can define a metric p by the rule : p(x, y) =|| x—y|| for all
x,ye X . It is an easy task to check that p satisfies all metric axioms; and (X,p)
becomes a metric space with the metric topology called Norm Topology because
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of its induction from norm || ||. We write lIm X, =x in X off lim || x, —x[[=0 this
n—>0 n—>0

convergence in NLS X is known as convergence in Norm. Similarly, we define a
Cauchy sequence in NLS X.

A subset B in a NLS X is said to be bounded if there is a +ve K such that
||x||<K forall xeB

Let x,€ X, and take a +ve number r Then in NLS X, the set
{xe X :||x—x,| <r} is called an open ball denoted by B,(x,) centred at x, having

radius = r. Similarly, we have a closed ball B, (x,)={xex:||x—x,|[<r}; and in
agreement with usual open sphere we encounter in Co-ordinate Geometry we have a

sphere §,(x;))={xe X :||x—x, | =r centred at x, with radius = r.

Definition 2.3.2. A NLS (X, || ||) is said to be a Banach space if it is a complete
metric space with metric induced from the norm function || || on X.

Example 2.3.1. The space C[a,b] of all real-valued continuous functions over
closed interval [a,b] is a Banach space with supnorm || f ||= sup | f(?)|; f €Cla,b].
ast<b

Solution : It is routine exercise to see that C[a,b] is a real linear space in respect
of usual addition and scalar multiplication of continuous functions.

Now put || f||= sup | f(¢)| for f e Cla,b] wherein we recall that | f| is also
ast<b

continuous function over closed interval [a,b] with a finite sup value =|| f||>0.
Also || f||=0 if and only f equals to the zero function. So (N.1) axiom i1s satisfied;
For (N.2) take o any scalar (real), then we have for f e Cla,b],

leef [|= sup |[(@f)O)|=sup || f()[=|a]sup | f(O)]=|elllf]].

a<t<h ast<h a<t<h

' +gll= + @)t
Also, if f, g eCla,b] we have |/ +&ll as';gbe 21|

= sup [J(D+g(O]< sup [ f(D)|+ sup [g@) =]/ lI+][£]].

ast<h
Thus Cla,b] 1s a NLS; Now take {f,} as a Cauchy sequence in C[a,b]; So

| f,—full—=0 as, n.m—>o. Give a g >0, we find an index N satisfying

|| f, — fnll<& whenever n,m>N .
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Thatis, sup | £,(t) = f, (E)| <& ooorvviirrree

a<t<h

Thus for a<t<b, we have | £, () f,,(®)|< sup | f, &) f,,(t)| <& whenever
ast<b

n,m> N . Above inequality shows that the sequence {f,} of continuous functions

over the closed interval [a,b] converges uniformly to a function say f over [a,b] and
also f becomes a continuous function over [a,b]. So f € Cla,b]. Taking m — o0 in
(2.3.1) we find

| 1,@)— f({)|<e whenever n>N and for all 7in a<r<b.

This gives sup | f,(#)— f ()| <& whenever n> N
a<t<h

Or.

2

| f,—fll<eforn=N
That means, 21_r)r010 Jn =1 €Cla,b] Thus C[a,b] is a Banach space.
Theorem 2.3.1. Let X be a NLS with norm || ||. Then
@ [IxlI=llyl|<llx—y]l for any two members x,y € X.
(b) || ||: X —> Reals is a continuous function.
Proof : (a) We write || x||=[[x—y+y|<|lx-y[+[y]

of, [[x[|=[VIISIXx=YI oo, (2.3.1)
Interchanging x and y we have

Ny l=lxl=ly=xI=Ilx =Y oo (23.2)
From (2.3.1) and (2.3.2) we write

([ xll=l[yD=llx=y]

lx =1yl <llx=yll
(b) Let {x,) be a sequence of elements in X converge to x,

or,

So ||x,—x,||—0 as x — 0. By (a) we have

6, 1=l % [ <112, =% [ >0 as n— 0.
That means, 21_r)r010 %, [[=1l %o [I. Hence norm function || || is continuous at Xg; As

X, may be taken as any point in X, (b) follows.
Remark : If r111—r>1<}o X, = X, and ;l_f}olo Yu=DYo in NLS X, then
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(a) rllgI;lo(xn iyn) =Xo # Yo
(b) 1i_r>n (Ax,) = Ax, for any scalar A.

Definition 2.3.3. Two norms || ||; and || ||, in a linear space X are said to be
equivalent if there two +ve constants a and b such that

allx|l, <||xll; < bl x|, forall ze X.
Example 2.3.2. Consider NLS = R (Euclidean 2-space) with two norms || ||; and
| Il defined by [|x, ¥ =" +* and [|x,yl=max (| x],|y]) for (x,y)ecR>.
Show that two norms are equivalent.

Solution : We have for (x, y)e R, |x[*<|x|* +|y|* and | y P <|x[* +]| y|?

Thus | (x, ) |,=max(| x|, [ y ) <yl P+ p P = 37 =[x 0
or, |yl <l Gyl 23.1)
Again ||(x,y) 2 =x?+ % = x P +]y P <2{max((x],| y 1> =2 (x, 3|

or, [[(xyn <2l (232)
Combining (2.3.1) and (2.3.2) we produce

G 2 <l ) h <V2 1)

Therefore two norms as given are equivalent in NLS = R

Explanation : If two norms || ||, and || ||, are equivalent in a NLS X, then
identify function : (X, || Il;}) > (X,] |,) is @ homeomorphism. (In fact, it is a linear
homeomorphism).
§ 2.4 QUOTIENT SPACE :

Let (X, || ||) be a NLS and F' be a linear sub-space of X.

If xeX,let x+F={x+y:yel}

These subsets x + F as x < X are cosets of /' in X.

Put X/F={x+F:xeX}.
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One observes that /' =0+/F, x,+ [/ =x,+F ifand only if x, —x, € I, and as a
result, for each pair x,,x, € X, either (x; + F)m(x, + F) =D
or, x; + 1" =x, + I
Further, if x, x,, 3, v, € X, and (x; —x,)e F, (3, —y,) € F, then
(X, +3)—(x,+y,) € F, and for any scalar o (X, —ax,) € I'because I is
Linear sub-space.
We define two operations in X\F by the following rule :-
1) (X\Fx(X\F)— (X|F)
where (x+F,y+F)—>(x+F)+(y+F)=(x+y)+F
and (i) R(¢)x(X\F)— (X|F)
where (o, x+F) > a(x+F)=ax+F

for all x,ye X and o any scalar.

It is now a routine exercise to verify that (X \F ) is a linear space in respect of

above ‘addition’ and ‘scalar multiplication’. Note that zero vector of this Linear
space (X | ) equals to F

Definition 2.4.1. The linear space X\I. where L is a linear subspace of NL§S X
is called the quotient space (or quotient space of X modulo ).

2
Example 2.4.1. Geometrically describe the quotient space R 4 where R = the
Euclidean 2-space and L is the sub-space represented by a line through origin

(0,0) e R*.

Solution : Given a sub-space L @i)ft‘%"

as represented by a line through -

) .. ><)L/"/ et
(0,0)e R, X is any position of RZ, IR 3@?5” L
then x+ L geometrically represents //’/ /1 *

a straight line through x parallel to .

the line represented by L; that is say

that x+ L i1s a translate of L through v’
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x. Further if y is any other position of RZ, then by Law of parallelogram we obtain
the position x + y and here (x+71)+(y+L)=(x+y)+L is re-presented by the
straight line through x + y and it is parallel to Z; that is—it is the translate of L
through (x + y) in R

Example 2.4.2. Obtain the quotient space C[O>% where ([0,1] is the linear

space of all real valued continuous functions over the closed interval [0,1] and L
consists of those members f € C[0,1] with f{1) = 0, i.e. vanishing at # = 1.

Solution : If f ge L, then A1) =g(1) =0, Now (f+g)1)=f(1)+g(1)=0;
So f+gel (note that sum of two continuous functions over [0,1] is again a

continuous functions over [0,1]), and for any scalar o we have o f € L when fel.
Therefore L is a sub-space of C[0,1].

Let us look at members of C[0,1]\L. Take f < (C[0,1] where f(1)=a (say).
Then for any other member g € C[0,1] sharing the value a at 7 =1, i.e. g(1) = a; we
note that (g — /) (C[0,1] such that (g— f)(1)e g()— f(1) =a—a =0 showing that
(g—f)el ie ge f+L.Sothese members g plus f all belong to f+ L.

Now if he C[0,1] with h¢ (f +1) (24.1)

So, h—felL

i.e. hand fdiffer at 7 = 1.

ie. ()= f(H=a
We similarly construct a member (2 + L) of C\L, where

(h+L)yn(f+L)=¢ (242
or else, we find a member ¢ in both implying
p—hel and p— fel

therefore @(1)—A(1)=0 and @(1)— f(1)=0

ie. @1)=hQ) and p(1)= f(1)

ie. h(l)=f(1)

that means s < (f + 1), which is not the case by (2.4.1).
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Theorem 2.4.1. Let L be a closed linear sub-space of NLS X, and let
l|x+L||=Inf{||x+yl|:yel}, forall xec X, then above is a norm function on the
quotient space (X \L). Further if X is Banach space, so will be (X \L).

Proof : For any member x + L of X\L, from definition we have

||[x+L||>0 forany xec X .
Now assume that || x+ L ||=0 for somexe X .
ie. Inf{l|x+y|:yel}=0
As ye L if and only if —y € L, we have
Inf{llx=yll:yel;=0.
Since L is closed, x e [ (distance of x from L is zero),

That means x+ /"= F = the zero vector of the quotient space X/L .
For verification (N.2) take oo any non-zero scalar. Then

la(e+L)[[=llax+L]
=Inf{llax+yll:yel;
=Inf{lla(x+2)|:yel}
=la|Inf{llx+(Qyll:yeL}
=|al||x+L]| , because L is a linear sub-space of X.
For triangle inequality (N.3) take x,ye L
Then || (x+0)+(y+L)||=|(x+y)+L| (L 1s a linear sub-space).
=Inf{||x+y+ull:uecl}
=Inf{llx+y+5+5|uecl}
<Infillx+3l+lly+5ll:uel;
<Inf{llx+5 | ueli+inf|y+5l:uecl}
=Inf{||x+h| uel}+Inf||y+K|:Kel}; Lisa sub-space.
=[x+ L{+|ly+L]

126



Thus quotient space X\L 1is a NLS.

Now suppose X is a Banach space. We show that the quotient space X/L is so.
Let {x, +L} be a Cauchy sequence in (X /L) So corresponding to each +ve integer
k we find an index N, such that

1
||xn_xm+L||<2_k, whenever m,n> N, (2.4.1)

We define by Induction a subsequence {xnk} of {xn} such that

1

l|x, —x 1+L||<2—k

My My

Take m =N,, and suppose m,,m,..,n, have been so defined that
m<m<.<mand N,<n;, =12, k).

Let n,, = max{N,,, n, +1}. This enables one to obtain an increasing sequence
{n,} and (*) follows from (2.4.1)

Put Y; =X, . Then by induction we define a sequence {z;} in L such that
z; €(y, +L) and 2k = Zga | <#, k=12, ...

Choose z (), +L1), suppose z,,....,z; have been so chosen to satisfy above
condition. Then y, +L =z, +L and by (2.4.1) we have 25 = Vien JFF||<2L1€. By

definition of norm in (X \L)

1
we find z;,, € (y;,, +L) such that |25 T2k [ <2, _yk+1+L||+2_k.

1
Then |1z + Zp [ < W as wanted.

@ @
That means ZH Zy = Zg || is convergent, and hence Z(Zk —Z41) is convergent.
k=1 k=1

@
But Z(Zk — i) =21 = 2) (2 = 23) + o A2y — 2 = 2~ Zppy
=
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So, {z,,} is convergent; Put ,}1_{{30 Zr = Z;since z; €(y; +L)

we have ||(z+L)—( + D=l z=y + L[]z 24 ||

That means ]‘lim {y; +L}=z+L. Thus given Cauchy sequence {x,+L} has a
—>w

convergent subsequence {X, +/7}.

Hence {x,+L} is convergent in (X \L). This proves that (X \L) is a Banach

space.

§ 2.5 CONVEX SETS IN NLS :
Let (X, || ||) be a NLS, and C be a non-empty subset of X.
Definition 2.5.1. C is said to be a convex set if for any real scalar ain Q< ¢ <1,

and any two members x,,x, € C we have ax +(1-a)x, is a member of C.

Or, equivalently, for any two reals «, f with 0<a, f<1 a+pf=1,
(ax, + Bxy)eC.
Or, equivalently, the segment consisting of members 7x, +(1-1)x, (0<r<1) isa

part of C.

For example, in an Euclidean space like R”, cubes, ball, sub-spaces are all
examples of convex sets in K.

Theorem 2.5.1. Intersection of any number of convex sets in a NLS is a convex
set, but their union may not be so,

Proof : Suppose {C,}, ., be a family of convex set in NLS (X, || ||) and put
C:a(;ACa; Let C#¢ and let x,yeC take 0<a <1. Now xayerACa, so for
every o, x and y are members of C, which is convex, thus, (ax+(1-a)yeC,.
Therefore ax+(1—-a)y i1s a member of every C, and hence is a member of
[ C, =C  Thus C is shown to be a convex set in X.

Union of two convex sets may not be a convex set. Every triangular region in

Euclidean plane is a convex set but the figure X as a union of two such convex sets
fails to be a convex set.

Theorem 2.5.2. A subset C in a NLS is convex if and only if sC +1C =(s+1)C
for all +ve scalars s and 7.
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Proof : For all scalars s and ¢ we have
(SHOC TSCHIC o (2.5.1)
If C is convex and s, f are +ve scalars we have

S o+t ccc
S+ S+

Or SCHIC C(SHC oo, (25.2)
Combining (2.5.1) and (2.5.2) we have
sC+1C =(s+1)C

Conversely, suppose (s+1¢)C =sC+¢C holds for all +ve scalars; If 0<g <1,
take s=a and r=1-¢ and then we find aC +(1-a)C < C. So C is convex.
Theorem 2.5.3. A ball (open or closed) of a NLS is a convex set.

Proof : B(x,,r) be a closed ball in a NLS (X]| |)).

Let x,yeB(xy,r); So ||x—x,[|<r and ||y-x,|[<r. If 0<¢<1, and

u=tx+(1-t)y, we have
lu—xp =[x+ (A=0)y—(xg +A=0)xp) || =[] 1(x —x0) +(1=1)(¥ = yo) ||
<tx=x, || +HA=-D) ||y =y l|IStr+(A-Or =r.

That shows u € B(x,,7). So, B(x,,r) is shown to be convex. The proof for an
open ball shall be similar.

Example 2.5.1. If (X, || ||) is a Banach space and L is a closed sub-space of X,
show that L is a Banach space.

Solution : If L is a closed sub-space of X, then L becomes a closed set of a
complete metric space X, the metric being induced from the norm || ||. And we know
that every closed sub-space of a complete metric space is a complete metric sub-
space and hence here L is a Banach space. (as a sub-space of X).

§ 2.6 BOUNDED LINEAR OPERATORS OVER A NLS (X, || |)) :

Let (X || |]) and (7, || ||) be two NLS with same scalar field. (Here, same notation
|| || has been used for norm function; it is to be noted that norm functions in X and ¥
are, in general, different).
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Definition 2.6.1. A function (or mapping or transformation) (function, map,
mapping, transformation are synonyms of the same mathematical object) 7: X — Y

is called a linear operator if (1) 7'(x; +x,)=7(x,)+7(x,) for any two members x;
and x, in X, and
(2) T(ax)) =aTl(x)) for any scalar o and for any member x, € X.

Explanation : For a linear operator 7: X — Y condition (1) in Definition 2.6.1

is termed as linearity condition which says Image of the sum is equal to sum of the
images. Condition (2) is known as that homogeneity. For example, if y =y = p=

the space of reals with usual norm (Euclidean norm) and 7:R— R is given by
T(x)=ax where xc R and a is a fixed real (zero or non-zero), we verify that 7' is
a linear operator; and we shall presently see that any linear operator : R —» R shall
be of the form 7'(x)=ax for some fixed scalar o for all xc R.

Definition 2.6.2. The operator 7: X — Y defined by 7(x)=0 in Y. For all X,
is called the zero operator, denoted by 0.

Remark : (a) The zero operator : X — Y is a Linear operator.

(b) The identity operator, / : X — X where I(x) = x for all xe X is a linear
operator.

Theorem 2.6.1. Let 7 : X — Y be a linear operator. If 7 is continuous at one
point of X, then 7'is continuous at every other point of X.

Proof : Suppose 7' is continuous at x, € X ; so given g>(, there is a +ve d
such that ||7(x)-T7(x,)||<e& whenever |[(x)—(xy)||<J . Suppose x(#x,) be
another point of X. Then if || x—x, ||<&, we write || x—x; [[=| xq—(x—x +x,)|].

Thus |[(x—x +x,)||<d shall give by virtue of continuity of 7" at x,,

1 7(x=x +x0) =T (xp)[[ <&
or, ||T(x)=T(x)+1(xy)—T(xy)|| <& because I is linear.

or, ||7(x)—T(x)| <& . Therefore T is continuous at x = x;.

Corollary : A linear operator over a NLS X is continuous either everywhere or
nowhere in X
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Definition 2.6.3. A linear operator 7: X — Y is called bounded if there is a +ve
constant M such that

I T(x)|| <M || x]|| for all xeX

[T
[[x]]

or equivalently <M for all non-zero numbers xe X .

Theorem 2.6.2. Let 7' : X — Y be a linear operator. Then 7'is continuous if and
only if 7"is bounded.

Proof : Let 7 : X — Y be a continuous linear operator; if possible let 7 be not

bounded. So for every +ve integer n we find a member x, € X such that

T R X, 1] oo (2.6.1)
Now x,, is non-zero vector in X, put ¥, = ,
nllx, |

clearly 11 ||:l~ =10 as So we see limu, =0 in X; B

S A "> . pom!'n =2 in X; By

continuity of 7" we have 71,1330 T'(u,)=T(0)=01in ¥ (7(0)=0, because I is linear);

Therefore we have || 7(u,)|| >0 as n—> o )

xn
On the other hand, [ 7(,)|l= T[ j

nllx, 1]’
1
nx, | (x,) ||, because 7 is linear
1 1
= | 7(x,) [|>1

Now [[7'(u,)||>1 and (*) are contradictory.

So, we have shown that 7: X — Y is bounded.

Conversely, suppose linear operator 7: X — Y is bounded. Then we find a +ve
scalar such that

7| =M || x][;
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So given > (), there is a tve 0 = ﬁ (here), such that

||T(x)||<e whenever ||x||<d

ie. ||T(x)—1(0)||<& whenever || x—0|<J because 7(0)= 0 in Y. That means,

T'is continuous at x =0 in X, and therefore Theorem 2.6.1 says that 7"is continuous
at every non-zero position of X. The proof is now complete.
Examples of bounded and unbounded linear operators.

Example 2.6.1. Consider a transformation 7 of rotation in Euclidean 2-space R
given by 7'(x,y) — (x,y") where

(*)

x'=xcosf+ ysinf }
y'=—xsin@ + ycosd

Now it is easy to verify that 77- p2 _ R?, under (*) is a linear operator in respect
which rotation takes place around origin (0,0) with axes of co-ordinates being rotated
through angle g to give new axes of co-ordinates.

In NLS R with usual norm || (x, y) || = x> + y*, we see that
1T W) 1P=11 (X, ¥ ]| = %% + ' = (xcos6 + ysin@) + (—xsin 6 + y cos )

2 2 2
=x"+y =[x,y

Thus || 7(x,y)||=||(x,y)]|; and this is true for all points (x, y) in R*, and we
conclude that 7' is a bounded linear operator.

Example 2.6.2. Consider the Banach space ([0,1,] of all real-valued continuous
functions over the closed interval [0,1] with respect to sup norm

1/ 11= Sggllf(f)l;feC[O,l]

Let K(s,7) be a real-valued continuous function over the square

{0<s<t;0<1<1}.

Now define 7" :C[0,1] — C[0,1] by the rule : let 7(f)=F

where F(s)= [ k(s.),/ (0dt; as f € C[0,1].
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It is a routine exercise to check that /' is continuous over [0,1] and 7'is a linear
operator.

1
Now, | 7(/)[|=[£"][= sup [F(s)|= sup Ifk(s,f)f(f)dfl
0<s<1 0<s<1 0

1 1
< sup [|k(s,0)|| f()|di <M[| f(t)|di where M = sup  [k(s,1)];
OSsSIO 0

0<s<1, 0<<1

1
<M sup |f(l)|IdZ:M.||f ||. This is true for every member f < (C[0,1].
0<r<l 0

Therefore, 7" is shown to be bounded.

Example 2.6.3. Let C(l)[O, 1,] denote the class of real-valued continuous functions
that are continuously differentiable over [0,1]. Then C(l)[O,l] is a sub-space of
C[0,1] which is Banach space with sup norm. Consider the Differential operator

d .
D:c®10,11 - €[0,1] when D(f)=g; feCP[0,1] and 7 /() =) in 0<7<1.
We can easily verify that DD is a linear operator; presently we see that D is not
bounded.

Let us take f, eC(l)[O,l] where f,(f)=sinnzt in 0<¢<1. Then we have

Df, = ¢, where 0,(1)= %(sin nat) = nrcosnat in 0<f<1.
= sup |sinnxt|=1
Therefore, ||/ |l OStIs)l | =1 and

1 DD =11 @, || = sup |nxcosnxt | = nx
0<<1

Here —”D(f”)”—n—”_mo as n— o

FA

That means D can not be bounded.

Definition 2.6.4. Let 7 : X — ¥ be a bounded (or equivalently, continuous)
linear operator. Then the norm of 7, denoted by || 7'|| is defined as

T || =Inf{M >0:|| T(x)|| <M | x| for all xe X}

(A set of +ve reals has always /nf. value).
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Theorem 2.6.3. Let 7: X — Y be a bounded linear operator. Then
@ [T<|ITlx]| for all xe X}

(b) II71[=supdl 7(x) I}

[l¢ll<1

() ||T||—‘SI‘TP{||T(X)||}

@ ITl=sn {HII( ||)H}

Proof : (a) From definition of operator norm we see that for any +ve € we have
TN <71+ &) x]| forall xe X .

Taking & —>0, we have || 7(x)||<||7 || x||
®) If ||x||<LxeX, wehave || T(x)|| <[ T|[[|x||<|T]

Therefore HSIHJEIIIT(x)||£||T||

(1)
From Definition of operator norm || 7'||, given any +ve €, we find x. € X such

that [[7(x) [[> (17 ]| —&) [ x1I.

X
Take U :m we see ||u, ||=1 such that
&

17 )| == 1T > = (I T [ =) [ % 1= T ]|~

I gll I gll
As  J|u.||=1, this gives sup||T(x)||>||T(u)||>||T|| -&.As €>0 is

[l <L

arbitrary we produce sup T[> T (2)

[l <L

From (1) and (2) we have (b), namely, sup NTH|=T]

[l¢ll<1

(¢) the proof shall be like that of (b).
(d) we have ||[T(x)||<|| T ||| x| forall xe X .
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%SHTH for xye X with x20.

2

Since r.h.s does not depend on non-zero x e X , we have

[T ]
sup————<|| 7'
b 1I¥] @)
Again given a +ve € (0<g <||7T'||) we find a member x_. € X such that
TG N> T[] &) [ |I; clearly x_#0.
IEAEN)]
Thus — 1 >I7']|-¢
N
[ZC N T Ce) |l
sup > >|| T -¢€
Therefore “8 el = T, |
Now taking & —0, we find
[T ]
sup————=|| 7'
x#0 ||x|| (4)

[T

1]l

Combining (3) and (4) we have sup =7
x20

EXERCISE A

Short answer type questions :
1. In alinear space X if x € X show that — (—x) = x.

2. 1If a finite set of vectors in a linear space contains the zero vector show that it is
a linearly dependent set.

3. In Euclidean 2-space R describe geometricaly open ball centred at (0,0) with
radius = 1 in respect of (a) || x||;= y/x +x,° (®) || x|,=]x |+]x,]| and
(©) Ilx[l3=max{|x |,|x; [} where x=(x,x,)eR".

4. Obtain a condition such that function suit and gin 4z are linearly independent in
the space ([0,2m7].
5. Construct a basis of Euclidean 3-space R containing (1,0,0) and (1,1,0).
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EXERCISE B

Broad asnwer type questions

1.

If Cla,b] is the linear space of all real-valued continuous functions over the
closed interval [a,b], show that C[a,b] is a Normed Linear space with respect to

b
/1= I| Sfldr f €Cla,b]. Examine if C[a,b] is a Banach space with this norm.

In a NLS X. verify that for a fixed member g X, the function f: X —> X

givenby f(x)=x+a; xc X is a homeomorphism. Hence deduce that translate
of an open set in X is an open set.

Examine if the sub-space p[0,1] of all real polynomials over the closed interval
[0,1] is a closed sub-space of the Banach space C[0,1] with sup norm.
Prove that in a NLS the closure of the open unit ball is the closed unit ball.

Let (X, || ||) and (¥, || ||) be two NLS over the same scalars and 7: X — Y be a
linear operator that sends a convergent sequence in X to a bounded sequence in
Y Prove that 7'is a bounded linear operator.

Let 7 : C[0,1] — itself, where C[0,1] is the Banach space of all real-valued
continuous functions over the closed unit interval with sup norm such that
1(x) = y where

t
y(f)fo(U)dU; xe([0,1] and 0<7 <1
0

Find the range of 7 and obtain 77! : (range ) — C[0,1]-

Examine if -1 is linear and bounded.
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