UNIT 3

(Contents : Every Finite Dimensional NLS is a Banach space, Equivalent norms,
Riesz Lemma, Finite Dimensionality of NLS by compact unit ball, Linear operators
over finite Dimensional NLS and matrix representation; Isomorphism, Boundedness
of linear operators over finit Dimensional NLS, space Bd-Z(X,Y) of bounded linear
operators, and its completeness).

§ 3.1 FINITE DIMENSIONAL NLS

Theorem 3.1.1. Every finite dimensional NLS is a Banach space. To prove this
Theorem we need a Lemma.
Lemma 3.1.1. Let (x;, x,, ..., x,,) be a set of linearly independent vectors in a
NLS (X, || |); then there is a +ve B such that
llogx +ayx, +..+a,x, || =2 B(a | +]a, | +.+ |, |) for every set of scalars

a, 0 ...a,.

n
Proof : Put S = ZI a; |. Without loss of generality we take § > 0.
i

Then above inequality is changed into

d.
1 8%+ Boxy ...+ B, || 2 B, where f, =~ *)
and Y |B|=1.
i=1

If suffices to establish (*) for any set of scalars £, 5,,..., 5, with Z| Bil=1.
i=1

We apply method of contradiction. Suppose there is a sequence {y,,} with

n
(m) | _
v, :'Bl(nz)x1 Jr,32(7'1)362 +..”+,Bn(’”)xn; and Z| B =1 for m= 1,2, ...
i=1

such that ||y, || >0 as m —> o

n
(m) (m)
|5 = 2157 [ =1
Now '™ ZZ=1: !
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Hence for a fixed i the sequence {81 =(8", g* ..} is bounded. So

Bolzano-Weirstrass Theorem says that { ,Bl.(’”)} has a sub-sequence that converges to
(say) f;.

Let {),,} denote the corresponding subsequence of {y,,} . By the same argument
{¥,} shall give a sub-sequence, say {y,,,} for which the corresponding subsequence
of scalars { ,Bz(m)} converges to 3, (say). We continue this process. At nth stage we
produce a subsequence {¥, .} ={¥,1>Vs2,--} of {¥,} whose term

n

n
yn,m = Z§i(m)xi , Z| §i(m) | =1
i=1 i=1

such that ,},I_IBO 5 = B;, Hence we see

n n
rlll_fgo Ynm = Z,Bixi =) (say) when Z| B;i1=1. That means all p;’s are not
i=1 i=1

zero. Since X, X,,..., X, are linearly independent it follows that y #0.
Now nlql_ff}n Ynm =V gives
Lim [y, | =11y ]I

Since {y,,} is a sub-sequence of {y,} and ||y, |>0 as ; >, So
| Ypmll—0 as m—>o and so ||y||=0 giving y=0, a contradiction. Therefore

Lemma is proved.

Proof of Theorem 3.1.1. Suppose {y,} be a Cauchy sequence in a finite
dimensional NLS (X, || ||). Let Dim(X) = n, and (e, e,, ..., e,) forms a basis in X. So
each y,, has a unique representation.

(m) (m)

_ (m)
Ym =0 €T

e

ey +...+a, e,

Give a +ve & as {y,,} is Cauchy, we find an index N such that

||ym_yr||<8 for m,rZN.
S m) ()
m 7
Now &>V, =¥, 1=1 2™ = )e, |
i=1
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n
> > |\~ | by Lemma 3.1.1
i=1
whenever m, r > N . Therefore

n
g
|05i(m) _ai(r) | < Z| ai(m) _ai(r) | < B for mr>N
i=1
Therefore, each of the n sequences

{a,-(m)} (i=1,2,...,n) becomes a Cauchy sequence of scalars (reals/complex), and
by Cauchy’s General Principle of convergence becomes a convergent sequence with,
say,

(m)

lim o™ = (% (say), i =12, ..., n.

m—>w0
Put  y= Otl(o)el +O[2(0)62 +....+an(0)en; so yeX.

(m)

. 0 .
Further, r}ll_rgo o™ =" for i = 1,2, ..., n gives,

n n
0 0
1 9m= 2 II=1 @™ = e 123 1™ =V Nl e |0 as m 0.
i=1 i=1

i.e. lim y, =ye X . So given Cauchy sequence {y,} in X is convergent
m—>w0

in X; and (X, || ||) is Banach space.
Theorem 3.2.1. Any two norms in a finite dimensional NLS X are equivalent.

Proof : Let Dim (X) = n and (e, e,, ..., e,) form a basis for X. If x € X, we
write x = o e; + 0ye, + ... + e, uniquely.
Applying Lemma 3.1.1 we find a +ve £ such that

1xll = Bloy [+ [+ +]a, )

If #=max e 1l2; Then we have
SISR

n n u
Ixl <Dl lllell<p) e Iﬁﬁllxlll
i=1 i=1

or, f;l|lx|,<| x|, the other half of desired inequality comes by

interchanging norms || ||, and || ||,. The proof is now complete.
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Theorem 3.1.3. A NLS (X, || ||) is finite Dimensional if and only if the closed unit
ball (centred at 0) is compact.

To prove this theorem we need support of another result popularly known as
Riesz Lemma.

Lemma 3.1.2 (Riesz Lemma). Let L (# X) be a closed sub-space of a NLS

. . XY .
X, |I'D. Given a +ve € (0 <e < 1) there is a member yE(f) with || y||=1 such

that || y—x||>1—¢ forall xe [ .
X .
Proof : Take Yo € (f) and put d =dist(y,,L)

=Inf | yo—x||
xel

Since L 1s closed and y, is outside L, we have d > 0. Given a +ve & choose
1> 0 such that

Ui
d+n

<&

So we find a member x, € L such that

d<|yy-xll<d+n

— X,
Take V= Yo% ||(yo #Xy); then || y|[=1, and we have

1 Yo — %o
. . . . , X
Yo =X+l ¥y —xy || y. Since y, 1s outside L, we find y also outside L i.e. V € (f)

Yo — X
If xe [, we have ||y—x||=Hm_xH

1 1 ’
e L x| = —— 5o~ ¥
oo 0= xloo =0 H= =g 10 =l (say)

14 .
where x'=x,+|| ¥, —x, || x; clearly x'c [ because x,,xecL.

1

d+n

— ' > =]— =
||y0 x||_d+77 d+77

1-¢.

Therefore, ||y —x||>
The proof is now complete.
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Proof of Theorem 3.1.3. First suppose that closed unit ball
B(0)={xe X :||x||<1} in a NLS (X, || |) is compact and hence is sequentially
compact. We show that Dim (X) < .

Suppose no. take x; € X with ||x ||=1 and L; as the sub-space spanned by

x(#0). Then L, is a closed sub-space of X without being equal to X. So we apply

Riesz Lemma (Lemma 3.1.2) when we take €= % Then we find x, (X \L1) with

1
Ix;[|=1 and [[¥ — % [|> 7.

Take L, as the sub-space spanned by x; and x,. By the argument same as above
we find L, as a proper closed sub-space of X and attracts Riesz Lemma. Thus there

. . 1 1
is x3€(X\Ly) with ||x;]|=1 and [[x; —X ||>§, | x5 —x, ||>§.
We continue this process to obtain a sequence {x,} with || x| =1 ie. x, e B,(0)

such that ||x, —x,, |I>% for n=m. That means {x,} does not admit if any

convergent subsequence : a contradiction that l?l. (0) 1s sequentially compact. Hence
we have shown that Dim(X) <.

Conversely let (X, || ||) be finite dimensional. Then it is a well known property
that a subset in X is norm-compact if and only if that subset is bounded and closed.

Here the closed unit ball B;(0) is bounded; and hence it must be compact. The
proof is now complete.
§ 3.2 LINEAR OPERATORS OVER FINITE DIMENSIONAL SPACES :

Let R" denote the Euclidean n-space. Then an mxn real matrix

all alz P aln
Ay Ay ... a . _

21 %22 21 |defines a Linear operator 7':R" — R™ where T'(X)=y;
L) Qym
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x=(,$,¢,) and Y = (1,1, 11,) such that

n
Zaijszﬂi i=1,2 ...
7=

Verification is an easy exercise and is left out.
Conversely, given a linear operator 7: R” — R™ . We show that it is represented

by an (mxn) real matrix. Let us take (e;, e,,...,¢,) as a basis in R" where

e,-:(ilo—), i = 12,.. n And let £f=(10,0,.0) £ =(0,10,0,.0),
ith place ﬁf—/
m places

£, =(0,0,....,1) form the analogous basis in R".
Let T(e;)=a; e R”
= h+ayh+.ta,tf, (say) (=12, .., n)
In general, if x=(&,&,,..£,)eR”  andif T(x)=yeR”

we have  Mf +1fo . 41, =) and

J=1

)~/:T(J~c):T{ijejjzzn;ij(ej):Zn;quj
J= J=

-3¢, (iafj

Jj=1 i=1

NgE

7

Il
LN

{Z%‘fjjfi

A

Or, inifi :i{zn:aijgjjfi gives 7, :Zlaijg' i=1,2, ..., m
i=1 j Jj=

i=1\_j=1

Therefore, 7 is represented by the matrix ((06 j,-)

mxn
Remark : Given a linear operator 7 : R” — R™, there is an (mxn) matrix to

represent 1. Entries (reals) in this matrix depend upon the choice of basis in underlying
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spaces. If basis changes co-efficients entering representative matrix change; However
order of the matrix does not change.

Example 3.2.1. Let p;[0,1] denote the linear space of all real polynomials over
the closed interval [0,1] with degree <3. Let D: p5[0,1] = p,[0,1] be the differential
operator. Show that D is a linear operator and obtain a representative matrix for D.

Solution : Here p3[0,1] (and similarly p,[0,1]) is a real linear space with
Dim p;[0,1] =4 (Dim( p,[0,1]=3). Let us take (p,, p;, P», p3) as a basis for p;[0,1]
where p,(t)=1, p(t)=t, p,(t)= ¢ and p3() = £in 0<r<1.

Then we have D(py)=0, D(p)=1, D(p,)=2t and D(p;)=31>; and we
write

0 =0p,+0p, +0p,

1 =1py+0p, +0p,

2t = Opy +2p, +0p,
and 3% = O0py+0p, +3p,

And therefore representative matrix {(;) for D is given b
U7 )3x4 g Yy

01 0O
0 0 2 0
0 0 0 3

3x4

Remark : Representative matrix for linear operator changes if basis is changed.

Example 3.2.2. Let p;[0,1] denote the linear space of all real polynomials over
the closed interval [0,1] with degree <3.

Let 7: p5[0,1] = p5[0,1] be a linear operator given by
T(ay +a1x+a2x2 +a3x3) =aq +Cl1(x+l)+a2(x+l)2 Jra3(x+l)3 for every
member g, +a,x+a,x> +a;x° € p3[0,1]; obtain representative matrix for 7 relative
to basis (i) (1, x, x%, x°) and (ii) (1, 1+ x, 1+ x*,1+x°) of p;[0,1]
Solution : Here Dim p5[0,1] = 4; So required matrix for linear operator 7" is of
order 4 X 4; where 1': p5[0,1] = p5[0,1].
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Now (i) (1, x, x*, x*) forms a basis for p;[0,1].
Now we have,
=1, T(x)=@x+1), 7)) =(x+ 1) and 7(x)’ = (x + 1. So we
write with respect to basis above
() =1 =1.1+0x+0x+0x°
T(x)=1+x = 1.1+1x+0x*+0x
7o) =(x+172 = 1.1+2x+1x°+0x°
) =(x+1)7° = 1.1+3x+3x°+1x°
Therefore representative matrix for 7 in this case shall be

oS O O =
S O =
S = N =
—_ LW W =

(ii) Here basis is (1,1+x, 1+ x>, 1+x°) of p;[0,1]
We have 7(1) = 1, 7(1+x) = 1 + (1 + x), T(1+x*) = 1 + (1+x)* and
T+ =1 + (1+x)}
Therefore relative to basis (1,1+x, 1+ x*,1+ x> ) we write
7(1) =1 =11+ 0(I+x) + 0.(1+%) + 0.(1+x°)
T(14+x) =2+x = 1.1 + L(1+x) + 0.(1+x%) + 0.(1+x%)
T(1+x%) = 1+142x+* =-1.1 + 2.(1+x) + 1.(1+x%) + 0.(1+x)
T(1+x%) = 1+163xH3x% 4+ = 5.1 + 3.(1+x) + 3.(1+%) + 1.(1+)
Therefore representative matrix for 7 in this case shall be

1 1 -1 -5
01 2 3
0 0 1 3
0 0 0 1

Note : Basis taken and treated above should be termed as ordered basis. In
ordered basis order of arrangement of vectors is basis in important. For example, in
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Euclidean 3-space R’ we know (e, e, e3) 1s a basis in R3, where e; = (1,0,0), e, =
(0,1,0) and e; = (0,0,1). Then each of (e, e,, e3), (e, €;, e3) and (e, €5, €,) 15 an
ordered basis and they are different ordered basis for K.

§ 3.2(A) ISOMORPHIC LINEAR SPACES :

Definition 3.2.1. Two linear spaces X and ¥ over the same scalars are said to be
isomorphic (or, linearly isomorphic) if there is a linear operator 7' : X — Y that is
1-1 (injective) and onto (surjective). The operator 7 is called an Isomorphism.

Theorem 3.2.1. Linear isomorphism between linear spaces over same scalars
on the class 77, of all such spaces is an equivalence relation.

Proof : If X € I, the identity operator / : X — X is an isomorphism. So the
binary relation of being isomorphic is reflexive; let X, ¥ € I" such that X is isomorphic

to ¥ with ¢ : X — ¥ as an isomorphism; Then o' :¥ —> X is also an isomorphism.

Thus Y is isomorphic to X. Hence relation of isomorphism is symmetric. Finally, if
f:X—Yand g: ¥ — Z are isomorphism, then (g. f) : X — Z is also an isomorphism.
Therefore, the relation of isomorphism is transitive. Thus it is an equivalence relation.

Theorem 3.2.2. Every real linear space X with dim(X) = » is isomorphic to the
Euclidean n-space R,

Proof : Let (u, u,,...., u,) form a basis in X. So if # € X we write
u =&y +Euy +. +Eu, uniquely.
Define an operator 7 : X — R” by the rule :
Tu)=(,5,,...,E,)e R" where u=C&u +&uy+...+&u, € X

n
Then it is easily verified that 7 is a linear operator. Furhter, if ¥ = Zfiuz‘ and
i=1

V= 2771'”1' with 4 =y are members of X, then we have
=1
(517 527'“7 gn) 7z (7717 7727"'7 nn) or T(u) 7z T(”)a
thus 7'is 1-1. Finally, for (¢, a,,..., ) € R”
We have Zaiui €X such that T{Zaiuij =(a, ,...a,,) |
i=1

i=1

145



So 7T'is onto. Therefore X is isomorphic to K",
Notation : If two linear space X and Y are isomorphic we use the symbol y [y .
Corollary : Any two real linear spaces of same finite dimension are isomorphic

Because if X and Y are finite dimensional real linear spaces with Dim(X) = Dim(Y),
we apply Theorem 3.2.2. to say y ] p”; and hence x [y .

Theorem 3.2.3. Every linear operator over a finite dimensional NLS is bounded
(hence continuous).

Proof : Let (X, || ||) and (7, || ||) be two NLS over same scalars and Dim(X) <co,
say, being equal to n, and let (e, e,, ...., e,) be a basis for X. Then each member
x € X has a unique representative as x = &y +&,e, +....+&,e, where &;’s are scalars.
Let us define a norm || x||' by the formula :

n
lxl'=1&1.
i=1

It is an easy task to check that || x| is indeed a norm in X. Since X is finite
dimensional, we know that any two norms in X are equivalent.

Therefore there is a +ve M satisfying
x| <M|[x]| forall xe X

ie. ZI:|§,. |<Mixy (*)

If 7: X — Yis a linear operator and x = Zfiel. e X, we have
i=1

||T<x>||=||T{Zifieij||=||ﬁlé,f<e,->||

SZI:|§1'|HT(€1')H

<max(|| 7(e) |l [ T(e) . .. | (e, ) [D- M || x|
(from (*)) =L x|, (say).

This being true for all x € X, we conclude that 7 is bounded.
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§ 3.3 SPACE OF ALL BOUNDED LINEAR OPERATORS Bd.Z(X,Y)
Let (X, || ||) and (7, || ||) be two NLS with same scalar field. Then zero operator
O : X — Y where O(x)=0€Y as xe X is a bounded linear operator. Therefore
BdZ£(X,Y)#¢. ltis a routine exercise to check that Bd.Z(X,Y) becomes a linear
space with respect to addition and scalar multiplication as given by
(I} + T,)(x) = T;(x) + T, (x) forall xe X ; and 7;,7, € BdL(X,Y) and
(AT)(x)= AT;(x) for all xc X and for all scalars A and 7; € BdZL(X,Y)

Theorem 3.3.1. Bd .Z (X,Y) is a Normed Linear space, and it is a Banach space
when Y is so.

Proof : Let us take the norm in linear space Bd.Z(X,Y) as operator norm ||7'|
as I'e BdL(X,Y). We verify that all norm axioms are satisfied here.
For (N.1) it is obvious that ||7'||>0 always for any member 7'c BdZ£(X,Y);

zero operator O has the norm || O] =0

Suppose || T||=0 i.e. sup||T(x)||—O So if || x]| <1, we have

[l¢ll<1

||Tx||<Hs1‘1p||T(x)||—O gives [[7(X)[[=0 oo, (1)
If || x||>1, then put y= Tl || ; Thus ||y||—H|| HH—I so as got above
I7(») =0 or 0—||T(y)||—H I H ey 700l giving
HTG)E0 oo, )

So (1) and (2) say that 7'(x) =0 for all xe X i.e I equals to the zero operator.
For (N.2) take A to be any scalar.

Then || AT || = sup || (AT)(x) ||

[l¢ll<1

=sup || AT (x) || = sup{| ATCo 3

[l¢ll<1 ll+fl<1

=[A]sup [T =1 AT,

ll+fl<1
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So (N.2.) is satisfied.
For triangle inequality, if 7}, 7, are members of Bd.Z(X,Y) we have for
xe X, [ L+L))|=1T(x)+ L) | <[ 1) |+ 1 () ]

<IN NN x = AN+ {175 1D [ x |]; this is true for all xe X,

Therefore ||7, +7, || <|| 1} || +| 75 ||, and that is the triangle inequality.

Therefore Bd.Z(X,Y) is a Normed Linear space (NLS) with respect to operator
norm.

Now suppose that Y is a Banach space. We show that B4 Z(x v) is so. Take
{I,,} as a Cauchy sequence in BdZ£(X,Y) i.e. ||1,,—1,||—>0, as n,m—> oo

If xe X, we have [|7,(x) =1, () || = | (,, = T, )(x) |

<\7,-1, 1|l x||=>0 as n,m —oo. That means, {7, (x)} is a Cauchy sequence

in (7, || ||) which is complete.
Let ImTZ,(x)=ye?
Let us define 7: X — Y by the rule :
T(x):;i_r}(}oﬁl(x) as xe X .
Now it is easy to see that 7'is a linear operator.

Further, |I|Z, =7, | |17, =7, =0 as n,m —>o.

That means {||7, ||} is a sequence of non-negative reals and this is Cauchy

sequence and therefore is bounded. So we find a +ve K satisfying

|7, ]|<K for all n
So, I T(x)[|=] lm 7, (x)[|= lim || 7, (x)]
< lim || 7, [[|| x[[< K| x[| by above inequality.

This being true for all xe€ X | we find 7: X — Y as a bounded linear operator
ie. Te BdL(X,)Y).
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Finally, from Cauchyness of {7, }, given a +ve €, we have

17,

wip—Lyll<e for nznyandp=12,. ..

Take [|x|[<1 in X, So ||T,,,(x) =T, ()= (T, , =T}l

S||T;'z _Tn||||x||£||Tn _Tn||'<8 forn2n0

+p +p

Let us pass on limit as p —> o, then we have
IT(x)-T1,(x)||<& whenever n>n,
This is the case whenever || x || <1; taking sup we have

sup || T(x)—7,(x)||<& whenever n=n,
ll+I<1

Now [[7'=1,, [|=sup [[(T'=T1,)(x)

[l <L

= sup || (T(x) =1, (x) |

[l <L
<& whenever n2>n,
So we obtain 71,1330 T,=TeBdL(X,Y) in operator norm.
The proof is now complete.
Example 3.3.1. Show Bd.Z(R" R") is finite dimensional with dimension n.

Solution : By matrix representation theorem we know that every member
T e BdZL(R",R") has a representative matrix of order #n X n (i.e. a square matrix of
size ). With respect to a fixed basis in K", we also see that BdZ(R",R") and the

2

linear space m,,, is finite dimensional with Dim(m,,)=n".

Therefore Dim(Bd£(R",R")) =n*
Example 3.3.2. A NLS (X, || ||) is a Banach space if and only if {xe X :||x||=1}
is complete.

Solution : Suppose (X, || ||) is a Banach space; then the given set {x € X :|| x| =1}
is a closed subset of X, and hence is complete.
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Conversely, suppose S ={xe€ X :||x||=1} is complete. Now let {x,} be a Cauchy

sequence in X, so ||x, —x,, ||—>0 as n,m — ©

Therefore ||| X, | =1, | | < x,—x, >0 as n,m — oo . Thus scalar sequence
{|lx, ||} 1s Cauchy, and by Cauchy General Principle of convergence {| x, ||} is
convergent; put 21_{{; %, l=a 1f o = 0 we see {x,}to be convergent in X and we

have finished. Or else oo > 0. Without loss of generality we assume that oo = 1. Let us

X
put Vu :m making ||y, ||=1 ie. y,€S.If possible, let {y,}be not Cauchy.
Then there is a +ve €, (say) and there are indices n, (> k), m; (> k) such that

| Y, =V, 1280, k=1,2, ...

Xn xmk xnk xmk
or, & < - < —x, [+x, —x, [|+|x, —
’ [ | e O 1 I 1 | e T S (|
1 1
:||xnk ||1__+||xmk =70 as k>, arriving at
x| [ X,

contradiction that g, 1s +ve. Therefore we conclude that {y,}is Cauchy in § by

. . _ N i .
completeness of which let ;/112330 v, =Y €S . That is 71,1330 x, = lim 1, || Yo = Yo
Hence {x,} is convergent in X and X is shown as a Banach space.

EXERCISE A

Short answer type questions

1. Let X be the linear space spanned by f and g where f(x) = sin x and g(x) = cos x.
For any real 6, let f,(x) = sin(x+8) and g,(x) = cos(x+8). Show that f; and g,are
members of X, and they are linearly independent.

2. Let A and B be two subsets of a NLS X and let A+B={a+b:ac Aand b e B}.
Show that if A or B is open then A + B is open.

1 -1
3. Let m,, be the linear space of all real 2 X 2 matrics and £ = (O 0 j .
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If 7:m,,—>m,, istaken as 1(4) = EA for Aem,,,, show that I"is a linear
operator.

If C 1s a convex subset of a NLS X and x, € X, and «is a non-zero scalar, show
that x, + C and o«C are convex sets.
Show that 7 : C[a,b] — R (real space with usual norm) defined by the rule :

b
T(H=[ t@di;  feClab).
Show that 7 is a bounded linear operator.

EXERCISE B

Let A and B be two subsets of a NLS X, and let A+B={a+b.ac Aand b B}.
If A and B are compact, show that A + B is compact.

Let M be a closed linear sub-space of a NLS (X, || ||), and X/M be the quotient
space, and T:X—)X/M where 7(x)=x+M for xc X .

Show that 7'is a bounded linear operator with || 77||<1.

Show that the space of all real polynomials of degree < n is the closed interval
#+1

[a,b] is isomorphic to the Euclidean (#+1)-space R .

Let (X, || ||) and (7, || ||) be NLS over same scalars and /5 7": X — Y be bounded
linear operators such that /" and 7 agree over a dense set in X, show that F'= T.

If X is a finite Dimensional NLS, and Y is a proper sub-space of X, then show
that there is a member x c X with || x||=1. satisfying dist(x,}) = 1.
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