UNIT 3

(*Contents*: Every Finite Dimensional *NLS* is a Banach space, Equivalent norms, Riesz Lemma, Finite Dimensionality of *NLS* by compact unit ball, Linear operators over finite Dimensional *NLS* and matrix representation; Isomorphism, Boundedness of linear operators over finit Dimensional *NLS*, space $Bd\mathcal{L}(X,Y)$ of bounded linear operators, and its completeness).

§ 3.1 FINITE DIMENSIONAL NLS

Theorem 3.1.1. Every finite dimensional *NLS* is a Banach space. To prove this Theorem we need a Lemma.

Lemma 3.1.1. Let $(x_1, x_2, ..., x_n)$ be a set of linearly independent vectors in a *NLS* (X, || ||); then there is a +ve β such that

 $\|\alpha_1x_1+\alpha_2x_2+...+\alpha_nx_n\|\geq\beta(|\alpha_1|+|\alpha_2|+...+|\alpha_n|) \text{ for every set of scalars}$ $\alpha_1,\alpha_2...,\alpha_n$.

Proof: Put $S = \sum_{i=1}^{n} |\alpha_i|$. Without loss of generality we take S > 0.

Then above inequality is changed into

$$\|\beta_1 x_1 + \beta_2 x_2 + ... + \beta_n x_n\| \ge \beta$$
, where $\beta_i = \frac{d_i}{S}$
and $\sum_{i=1}^n |\beta_i| = 1$.

If suffices to establish (*) for any set of scalars $\beta_1, \beta_2, ..., \beta_n$ with $\sum_{i=1}^n |\beta_i| = 1$. We apply method of contradiction. Suppose there is a sequence $\{y_m\}$ with

$$y_m = \beta_1^{(m)} x_1 + \beta_2^{(m)} x_2 + \dots + \beta_n^{(m)} x_n$$
; and $\sum_{i=1}^n |\beta_i^{(m)}| = 1$ for $m = 1, 2, \dots$

such that $||y_m|| \to 0$ as $m \to \infty$

Now
$$|\beta_i^{(m)}| \le \sum_{i=1}^n |\beta_i^{(m)}| = 1$$

Hence for a fixed i the sequence $\{\beta_i^{(m)}\}=\{\beta_i^{(1)},\beta_i^{(2)},...\}$ is bounded. So Bolzano-Weirstrass Theorem says that $\{\beta_i^{(m)}\}$ has a sub-sequence that converges to (say) β_i .

Let $\{y_{1,m}\}$ denote the corresponding subsequence of $\{y_m\}$. By the same argument $\{y_{1,m}\}$ shall give a sub-sequence, say $\{y_{2,m}\}$ for which the corresponding subsequence of scalars $\{\beta_2^{(m)}\}$ converges to β_2 (say). We continue this process. At nth stage we produce a subsequence $\{y_{n,m}\} = \{y_{n,1}, y_{n,2}, ...\}$ of $\{y_m\}$ whose term

$$y_{n,m} = \sum_{i=1}^{n} \delta_i^{(m)} x_i, \quad \sum_{i=1}^{n} |\delta_i^{(m)}| = 1$$

such that $\lim_{m\to\infty} \delta_i^{(m)} = \beta_i$, Hence we see

$$\lim_{m\to\infty} y_{n,m} = \sum_{i=1}^n \beta_i x_i = y \text{ (say) when } \sum_{i=1}^n |\beta_i| = 1. \text{ That means all } \beta_i \text{ 's are not}$$

zero. Since $x_1, x_2, ..., x_n$ are linearly independent it follows that $y \neq 0$.

Now
$$\lim_{m\to\infty} y_{n,m} = y$$
 gives

$$\lim_{m\to\infty} \|y_{n,m}\| = \|y\|.$$

Since $\{y_{n,m}\}$ is a sub-sequence of $\{y_m\}$ and $\|y_m\| \to 0$ as $m \to \infty$, So $\|y_{n,m}\| \to 0$ as $m \to \infty$ and so $\|y\| = 0$ giving y = 0, a contradiction. Therefore Lemma is proved.

Proof of Theorem 3.1.1. Suppose $\{y_m\}$ be a Cauchy sequence in a finite dimensional NLS(X, || ||). Let Dim(X) = n, and $(e_1, e_2, ..., e_n)$ forms a basis in X. So each y_m has a unique representation.

$$y_m = \alpha_1^{(m)} e_1 + \alpha_2^{(m)} e_2 + \dots + \alpha_n^{(m)} e_n$$

Give a +ve ε , as $\{y_m\}$ is Cauchy, we find an index N such that

$$||y_m - y_r|| < \varepsilon$$
 for $m, r \ge N$.

Now
$$\varepsilon > ||y_m - y_r|| = ||\sum_{i=1}^n (\alpha_i^{(m)} - \alpha_i^{(r)})e_i||$$

$$\geq \beta \sum_{i=1}^{n} |\alpha_i^{(m)} - \alpha_i^{(r)}|$$
 by Lemma 3.1.1

whenever m, r > N. Therefore

$$|\alpha_i^{(m)} - \alpha_i^{(r)}| \le \sum_{i=1}^n |\alpha_i^{(m)} - \alpha_i^{(r)}| < \frac{\varepsilon}{\beta} \text{ for } m, r > N$$

Therefore, each of the n sequences

 $\{\alpha_i^{(m)}\}\ (i=1,2,...,n)$ becomes a Cauchy sequence of scalars (reals/complex), and by Cauchy's General Principle of convergence becomes a convergent sequence with, say,

$$\lim_{m \to \infty} \alpha_i^{(m)} = \alpha_i^{(0)} \text{ (say)}, i = 1, 2, ..., n.$$

Put
$$y = \alpha_1^{(0)} e_1 + \alpha_2^{(0)} e_2 + \dots + \alpha_n^{(0)} e_n$$
; so $y \in X$.

Further, $\lim_{m\to\infty} \alpha_i^{(m)} = \alpha_i^{(0)}$ for i = 1, 2,, n gives,

$$||y_m - y|| = ||\sum_{i=1}^n (\alpha_i^{(m)} - \alpha_i^{(0)})e_i|| \le \sum_{i=1}^n |\alpha_i^{(m)} - \alpha_i^{(0)}|||e_i|| \to 0 \text{ as } m \to \infty.$$

i.e. $\lim_{m\to\infty}y_m=y\in X$. So given Cauchy sequence $\{y_m\}$ in X is convergent in X; and $\{X,\|\|\}$ is Banach space.

Theorem 3.2.1. Any two norms in a finite dimensional NLS X are equivalent.

Proof: Let Dim (X) = n and $(e_1, e_2, ..., e_n)$ form a basis for X. If $x \in X$, we write $x = \alpha_1 e_1 + \alpha_2 e_2 + ... + \alpha_n e_n$ uniquely.

Applying Lemma 3.1.1 we find a +ve β such that

$$||x||_1 \ge \beta(|\alpha_1| + |\alpha_2| + ... + |\alpha_n|)$$

If $\mu = \max_{1 \le i \le n} ||e_i||_2$; Then we have

$$\mid\mid x\mid\mid_{2} \leq \sum_{i=1}^{n}\mid\alpha_{i}\mid\mid\mid e_{i}\mid\mid \leq \mu\sum_{i=1}^{n}\mid\alpha_{i}\mid \leq \frac{\mu}{\beta}\mid\mid x\mid\mid_{1}$$

or, $\beta_{\overline{u}} \|x\|_2 \le \|x\|_1$, the other half of desired inequality comes by interchanging norms $\|\cdot\|_1$ and $\|\cdot\|_2$. The proof is now complete.

Theorem 3.1.3. A NLS(X, || ||) is finite Dimensional if and only if the closed unit ball (centred at 0) is compact.

To prove this theorem we need support of another result popularly known as Riesz Lemma.

Lemma 3.1.2 (Riesz Lemma). Let $L \neq X$ be a closed sub-space of a NLS (X, || ||). Given a +ve \in $(0 < \in <1)$ there is a member $\mathcal{Y} \in \left(\frac{X}{L}\right)$ with $|| \mathcal{Y} || = 1$ such that $|| \mathcal{Y} - \mathcal{X} || > 1 - \varepsilon$ for all $x \in L$.

Proof: Take
$$y_0 \in \left(\frac{X}{L}\right)$$
 and put $d = dist(y_0, L)$
$$= \inf_{x \in L} ||y_0 - x||.$$

Since L is closed and y_0 is outside L, we have d > 0. Given a +ve ε , choose $\eta > 0$ such that

$$\frac{\eta}{d+\eta} < \varepsilon$$

So we find a member $x_0 \in L$ such that

$$d \le ||y_0 - x_0|| < d + \eta$$

Take $y = \frac{y_0 - x_0}{\|y_0 - x_0\|} (y_0 \neq x_0)$; then $\|y\| = 1$, and we have

 $y_0 = x_0 + ||y_0 - x_0||y$. Since y_0 is outside L, we find y also outside L *i.e.* $y \in \left(\frac{X}{L}\right)$.

If
$$x \in L$$
, we have $||y - x|| = \left\| \frac{y_0 - x_0}{\|y_0 - x_0\|} - x \right\|$

$$= \frac{1}{\|y_0 - x_0\|} \|y_0 - x_0 - x\| y_0 - x_0\| = \frac{1}{\|y_0 - x_0\|} \|y_0 - x'\| \text{ (say)}$$

where $x' = x_0 + ||y_0 - x_0||x$; clearly $x' \in L$ because $x_0, x \in L$.

Therefore,
$$||y-x|| > \frac{1}{d+n} ||y_0-x'|| \ge \frac{d}{d+n} = 1 - \frac{\eta}{d+n} = 1 - \varepsilon$$
.

The proof is now complete.

Proof of Theorem 3.1.3. First suppose that closed unit ball $\widehat{B}_1(\underline{0}) = \{x \in X : ||x|| \le 1\}$ in a *NLS* (X, || ||) is compact and hence is sequentially compact. We show that $Dim(X) < \infty$.

Suppose no. take $x_1 \in X$ with $||x_1|| = 1$ and L_1 as the sub-space spanned by $x_1 \neq 0$. Then L_1 is a closed sub-space of X without being equal to X. So we apply Riesz Lemma (Lemma 3.1.2) when we take $\epsilon = \frac{1}{2}$. Then we find $x_2 \in (X \setminus L_1)$ with $||x_2|| = 1$ and $||x_1 - x_2|| > \frac{1}{2}$.

Take L_2 as the sub-space spanned by x_1 and x_2 . By the argument same as above we find L_2 as a proper closed sub-space of X and attracts Riesz Lemma. Thus there is $x_3 \in (X \setminus L_2)$ with $||x_3|| = 1$ and $||x_3 - x_1|| > \frac{1}{2}$, $||x_3 - x_2|| > \frac{1}{2}$.

We continue this process to obtain a sequence $\{x_n\}$ with ||x||=1 *i.e.* $x_n \in \tilde{B}_1(0)$ such that $||x_n-x_m||>\frac{1}{2}$ for $n\neq m$. That means $\{x_n\}$ does not admit if any convergent subsequence : a contradiction that $\hat{B}_i(0)$ is sequentially compact. Hence we have shown that $\mathrm{Dim}(X)<\infty$.

Conversely let (X, || ||) be finite dimensional. Then it is a well known property that a subset in X is norm-compact if and only if that subset is bounded and closed. Here the closed unit ball $\widehat{B}_i(\underline{0})$ is bounded; and hence it must be compact. The proof is now complete.

§ 3.2 LINEAR OPERATORS OVER FINITE DIMENSIONAL SPACES:

Let \mathbb{R}^n denote the Euclidean *n*-space. Then an $m \times n$ real matrix

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \text{ defines a Linear operator } T: \mathbb{R}^n \to \mathbb{R}^m \text{ where } T(x) = y;$$

 $\underline{x} = (\xi_1, \xi_2,, \xi_n)$ and $\underline{y} = (\eta_1, \eta_2,, \eta_n)$ such that

$$\sum_{i=1}^{n} a_{ij} \xi_{j} = \eta_{i} \quad i = 1, 2, \dots, m.$$

Verification is an easy exercise and is left out.

Conversely, given a linear operator $T: \mathbb{R}^n \to \mathbb{R}^m$. We show that it is represented by an $(m \times n)$ real matrix. Let us take $(e_1, e_2, ..., e_n)$ as a basis in \mathbb{R}^n where

$$e_i = \left(\frac{0}{i\text{th place}}\right), \quad i = 1, 2, ..., \quad n. \quad \text{And let} \quad f_1 = \underbrace{(1, 0, 0, ...0)}_{m \text{ places}}, \quad f_2 = (0, 1, 0, 0, ...0),$$
 $f_n = (0, 0, ..., 1) \text{ form the analogous basis in } R^m.$

Let
$$T(e_j) = \underline{a}_j \in R^m$$

= $\alpha_{1j} f_1 + \alpha_{2j} f_2 + ... + \alpha_{mj} f_m$ (say) $(j = 1, 2, ..., n)$

In general, if $\underline{x} = (\xi_1, \xi_2, \dots, \xi_n) \in \mathbb{R}^m$ and if $T(\underline{x}) = \underline{y} \in \mathbb{R}^m$

we have $\eta_1 f_1 + \eta_2 f_2 + ... + \eta_m f_m = y$ and

$$y = T(x) = T\left(\sum_{j=1}^{n} \xi_{j} e_{j}\right) = \sum_{j=1}^{n} \xi_{j} T(e_{j}) = \sum_{j=1}^{n} \xi_{j} \underline{\alpha}_{j}$$

$$= \sum_{j=1}^{n} \xi_{j} \left(\sum_{i=1}^{m} \alpha_{ij} f_{i}\right)$$

$$= \sum_{i=1}^{m} \left(\sum_{j=1}^{n} \alpha_{ij} \xi_{j}\right) f_{i}$$

Or,
$$\sum_{i=1}^{m} \eta_{i} f_{i} = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} \alpha_{ij} \xi_{j} \right) f_{i}$$
 gives $\eta_{i} = \sum_{j=1}^{n} \alpha_{ij} \xi_{j}$; $i = 1, 2, ..., m$.

Therefore, T is represented by the matrix $\left(\left(\alpha_{ji}\right)_{m \times n}\right)$

Remark: Given a linear operator $T: \mathbb{R}^n \to \mathbb{R}^m$, there is an $(m \times n)$ matrix to represent T. Entries (reals) in this matrix depend upon the choice of basis in underlying

spaces. If basis changes co-efficients entering representative matrix change; However order of the matrix does not change.

Example 3.2.1. Let $\rho_3[0,1]$ denote the linear space of all real polynomials over the closed interval [0,1] with degree ≤ 3 . Let $D: \rho_3[0,1] \rightarrow \rho_2[0,1]$ be the differential operator. Show that D is a linear operator and obtain a representative matrix for D.

Solution: Here $\rho_3[0,1]$ (and similarly $\rho_2[0,1]$) is a real linear space with Dim $\rho_3[0,1] = 4$ (Dim($\rho_2[0,1] = 3$). Let us take (p_0, p_1, p_2, p_3) as a basis for $\rho_3[0,1]$ where $p_0(t) = 1$, $p_1(t) = t$, $p_2(t) = t^2$ and $p_3(t) = t^3$ in $0 \le t \le 1$.

Then we have $D(p_0) = 0$, $D(p_1) = 1$, $D(p_2) = 2t$ and $D(p_3) = 3t^2$; and we write

$$0 = 0p_0 + 0p_1 + 0p_2$$

$$1 = 1p_0 + 0p_1 + 0p_2$$

$$2t = 0p_0 + 2p_1 + 0p_2$$
and
$$3t^2 = 0p_0 + 0p_1 + 3p_2$$

and

And therefore representative matrix $((a_{ij}))_{3\times4}$ for D is given by

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3
\end{pmatrix}_{3\times4}$$

Remark: Representative matrix for linear operator changes if basis is changed.

Example 3.2.2. Let $\rho_3[0,1]$ denote the linear space of all real polynomials over the closed interval [0,1] with degree ≤ 3 .

Let $T: \rho_3[0,1] \to \rho_3[0,1]$ be a linear operator given by

 $T(a_0 + a_1x + a_2x^2 + a_3x^3) = a_0 + a_1(x+1) + a_2(x+1)^2 + a_3(x+1)^3$ for every member $a_0 + a_1x + a_2x^2 + a_3x^3 \in \rho_3[0,1]$; obtain representative matrix for T relative to basis (i) $(1, x, x^2, x^3)$ and (ii) $(1, 1+x, 1+x^2, 1+x^3)$ of $\rho_3[0,1]$

Solution : Here Dim $\rho_3[0,1] = 4$; So required matrix for linear operator T is of order 4×4 ; where $T: \rho_3[0,1] \to \rho_3[0,1]$.

Now (i) $(1, x, x^2, x^3)$ forms a basis for $\rho_3[0,1]$.

Now we have,

T(1) = 1, T(x) = (x + 1), $T(x^2) = (x + 1)^2$ and $T(x)^3 = (x + 1)^3$. So we write with respect to basis above

$$T(1) = 1 = 1.1 + 0.x + 0.x^{2} + 0.x^{3}$$

$$T(x) = 1 + x = 1.1 + 1.x + 0.x^{2} + 0.x^{3}$$

$$T(x^{2}) = (x + 1)^{2} = 1.1 + 2.x + 1.x^{2} + 0.x^{3}$$

$$T(x^{3}) = (x + 1)^{3} = 1.1 + 3.x + 3.x^{2} + 1.x^{3}$$

Therefore representative matrix for T in this case shall be

$$\begin{pmatrix}
1 & 1 & 1 & 1 \\
0 & 1 & 2 & 3 \\
0 & 0 & 1 & 3 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

(ii) Here basis is
$$(1, 1+x, 1+x^2, 1+x^3)$$
 of $\rho_3[0,1]$

We have
$$T(1) = 1$$
, $T(1+x) = 1 + (1+x)$, $T(1+x^2) = 1 + (1+x)^2$ and $T(1+x^3) = 1 + (1+x)^3$

Therefore relative to basis $(1, 1+x, 1+x^2, 1+x^3)$ we write

$$T(1) = 1 = 1.1 + 0.(1+x) + 0.(1+x^2) + 0.(1+x^3)$$

$$T(1+x) = 2+x = 1.1 + 1.(1+x) + 0.(1+x^2) + 0.(1+x^3)$$

$$T(1+x^2) = 1+1+2x+x^2 = -1.1 + 2.(1+x) + 1.(1+x^2) + 0.(1+x^3)$$

$$T(1+x^3) = 1+1+3x+3x^2+x^3 = -5.1 + 3.(1+x) + 3.(1+x^2) + 1.(1+x^3)$$

Therefore representative matrix for T in this case shall be

$$\begin{pmatrix}
1 & 1 & -1 & -5 \\
0 & 1 & 2 & 3 \\
0 & 0 & 1 & 3 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

Note: Basis taken and treated above should be termed as ordered basis. In ordered basis order of arrangement of vectors is basis in important. For example, in

Euclidean 3-space R^3 we know (e_1, e_2, e_3) is a basis in R^3 , where $e_1 = (1,0,0)$, $e_2 = (0,1,0)$ and $e_3 = (0,0,1)$. Then each of (e_1, e_2, e_3) , (e_2, e_1, e_3) and (e_1, e_3, e_2) is an ordered basis and they are different ordered basis for R^3 .

§ 3.2(A) ISOMORPHIC LINEAR SPACES:

Definition 3.2.1. Two linear spaces X and Y over the same scalars are said to be isomorphic (or, linearly isomorphic) if there is a linear operator $T: X \to Y$ that is 1–1 (injective) and onto (surjective). The operator T is called an Isomorphism.

Theorem 3.2.1. Linear isomorphism between linear spaces over same scalars on the class Γ , of all such spaces is an equivalence relation.

Proof : If $X \in \Gamma$, the identity operator $I: X \to X$ is an isomorphism. So the binary relation of being isomorphic is reflexive; let $X, Y \in \Gamma$ such that X is isomorphic to Y with $\varphi: X \to Y$ as an isomorphism; Then $\varphi^{-1}: Y \to X$ is also an isomorphism. Thus Y is isomorphic to X. Hence relation of isomorphism is symmetric. Finally, if $f: X \to Y$ and $g: Y \to Z$ are isomorphism, then $(g: f): X \to Z$ is also an isomorphism. Therefore, the relation of isomorphism is transitive. Thus it is an equivalence relation.

Theorem 3.2.2. Every real linear space X with dim(X) = n is isomorphic to the Euclidean n-space R^n .

Proof: Let $(u_1, u_2, ..., u_n)$ form a basis in X. So if $u \in X$ we write

$$u = \xi_1 u_1 + \xi_2 u_2 + \dots + \xi_n u_n$$
 uniquely.

Define an operator $T: X \to \mathbb{R}^n$ by the rule :

$$T(u) = (\xi_1, \xi_2, ..., \xi_n) \in \mathbb{R}^n$$
 where $u = \xi_1 u_1 + \xi_2 u_2 + ... + \xi_n u_n \in X$

Then it is easily verified that T is a linear operator. Further, if $u = \sum_{i=1}^{n} \xi_i u_i$ and

 $v = \sum_{i=1}^{n} \eta_i u_i$ with $u \neq v$ are members of X, then we have

$$(\xi_1, \xi_2, ..., \xi_n) \neq (\eta_1, \eta_2, ..., \eta_n) \text{ or } T(u) \neq T(u);$$

thus T is 1–1. Finally, for $(\alpha_1, \alpha_2, ..., \alpha_n) \in \mathbb{R}^n$

We have
$$\sum_{i=1}^{n} \alpha_i u_i \in X$$
 such that $T\left(\sum_{i=1}^{n} \alpha_i u_i\right) = (\alpha_1, \alpha_2, ..., \alpha_n)$.

So T is onto. Therefore X is isomorphic to \mathbb{R}^n .

Notation : If two linear space X and Y are isomorphic we use the symbol $X \square Y$.

Corollary: Any two real linear spaces of same finite dimension are isomorphic Because if X and Y are finite dimensional real linear spaces with Dim(X) = Dim(Y), we apply Theorem 3.2.2. to say $X \sqcap R^n$; and hence $X \sqcap Y$.

Theorem 3.2.3. Every linear operator over a finite dimensional NLS is bounded (hence continuous).

Proof : Let (X, || ||) and (Y, || ||) be two NLS over same scalars and $Dim(X) <_{\infty}$, say, being equal to n, and let $(e_1, e_2,, e_n)$ be a basis for X. Then each member $x \in X$ has a unique representative as $x = \xi_1 e_1 + \xi_2 e_2 + + \xi_n e_n$ where ξ_i 's are scalars. Let us define a norm ||x||' by the formula :

$$||x||' = \sum_{i=1}^{n} |\xi_i|$$

It is an easy task to check that ||x||' is indeed a norm in X. Since X is finite dimensional, we know that any two norms in X are equivalent.

Therefore there is a +ve M satisfying

$$||x||' \le M ||x|| \text{ for all } x \in X$$
i.e. $\sum_{i=1}^{n} |\xi_i| \le M ||x||$ (*)

If $T: X \to Y$ is a linear operator and $x = \sum_{i=1}^{n} \xi_i e_i \in X$, we have

$$||T(x)|| = ||T\left(\sum_{i=1}^{n} \xi_{i} e_{i}\right)|| = ||\sum_{i=1}^{n} \xi_{i} T(e_{i})||$$

$$\leq \sum_{i=1}^{n} |\xi_{i}| ||T(e_{i})||$$

$$\leq \max(||T(e_{i})||, ||T(e_{2})||,, ||T(e_{n})||). M ||x||$$
(from (*)) = $L ||x||$, (say).

This being true for all $x \in X$, we conclude that T is bounded.

§ 3.3 SPACE OF ALL BOUNDED LINEAR OPERATORS $\operatorname{Bd} \mathscr{L}(X,Y)$

Let (X, || ||) and (Y, || ||) be two *NLS* with same scalar field. Then zero operator $O: X \to Y$ where $O(x) = 0 \in Y$ as $x \in X$ is a bounded linear operator. Therefore $Bd\mathcal{L}(X,Y) \neq \phi$. It is a routine exercise to check that $Bd\mathcal{L}(X,Y)$ becomes a linear space with respect to addition and scalar multiplication as given by

$$(T_1+T_2)(x)=T_1(x)+T_2(x)$$
 for all $x\in X$; and $T_1,T_2\in Bd\mathscr{L}(X,Y)$ and $(\lambda T_1)(x)=\lambda T_1(x)$ for all $x\in X$ and for all scalars λ and $T_1\in Bd\mathscr{L}(X,Y)$

Theorem 3.3.1. $Bd \mathcal{L}(X,Y)$ is a Normed Linear space, and it is a Banach space when Y is so.

Proof: Let us take the norm in linear space $Bd\mathcal{L}(X,Y)$ as operator norm ||T|| as $T \in Bd\mathcal{L}(X,Y)$. We verify that all norm axioms are satisfied here.

For (N.1) it is obvious that $||T|| \ge 0$ always for any member $T \in Bd\mathcal{L}(X,Y)$; zero operator O has the norm ||O|| = 0.

Suppose
$$||T|| = 0$$
 i.e. $\sup_{\|x\| \le 1} ||T(x)|| = 0$. So if $||x|| \le 1$, we have $||Tx|| \le \sup_{\|x\| \le 1} ||T(x)|| = 0$ gives $||T(x)|| = 0$ (1)

If
$$||x|| > 1$$
, then put $y = \frac{x}{||x||}$; Thus $||y|| = \left\|\frac{x}{||x||}\right\| = 1$; so as got above

So (1) and (2) say that T(x) = 0 for all $x \in X$ *i.e.* T equals to the zero operator. For (N.2) take λ to be any scalar.

Then
$$\|\lambda T\| = \sup_{\|x\| \le 1} \|(\lambda T)(x)\|$$

 $= \sup_{\|x\| \le 1} \|\lambda T(x)\| = \sup_{\|x\| \le 1} \{\|\lambda\| \|T(x)\| \}$
 $= \|\lambda\| \sup_{\|x\| \le 1} \|T(x)\| = \|\lambda\| \|T\|$

So (N.2.) is satisfied.

For triangle inequality, if T_1 , T_2 are members of $Bd\mathcal{L}(X,Y)$ we have for

$$x \in X$$
, $||T_1 + T_2(x)|| = ||T_1(x) + T_2(x)|| \le ||T_1(x)|| + ||T_2(x)||$

$$\leq ||T_1||(x)|| + ||T_2||||x|| = (||T_1|| + ||T_2||) ||x||$$
; this is true for all $x \in X$,

Therefore $||T_1 + T_2|| \le ||T_1|| + ||T_2||$, and that is the triangle inequality.

Therefore $Bd\mathcal{L}(X,Y)$ is a Normed Linear space (NLS) with respect to operator norm.

Now suppose that Y is a Banach space. We show that $Bd\mathcal{L}(X,Y)$ is so. Take $\{T_n\}$ as a Cauchy sequence in $Bd\mathcal{L}(X,Y)$ i.e. $\|T_n - T_m\| \to 0$, as $n,m \to \infty$

If
$$x \in X$$
, we have $||T_n(x) - T_m(x)|| = ||(T_n - T_m)(x)||$

 $\leq ||T_n - T_m|| ||x|| \to 0$ as $n, m \to \infty$. That means, $\{T_n(x)\}$ is a Cauchy sequence in $(Y, ||\cdot||)$ which is complete.

Let
$$\lim_{n\to\infty} T_n(x) = y \in Y$$

Let us define $T: X \to Y$ by the rule :

$$T(x) = \lim_{n \to \infty} T_n(x)$$
 as $x \in X$.

Now it is easy to see that T is a linear operator.

Further,
$$| ||T_n|| - ||T_m|| \le ||T_n - T_n|| \to 0 \text{ as } n, m \to \infty$$
.

That means $\{||T_n||\}$ is a sequence of non-negative reals and this is Cauchy sequence and therefore is bounded. So we find a +ve K satisfying

$$||T_n|| \le K$$
 for all n .

$$S_{O_n} \| T(x) \| = \| \lim_{n \to \infty} T_n(x) \| = \lim_{n \to \infty} \| T_n(x) \|$$

$$\leq \lim_{n\to\infty} ||T_n|| ||x|| \leq K ||x||$$
 by above inequality.

This being true for all $x \in X$, we find $T: X \to Y$ as a bounded linear operator *i.e.* $T \in Bd\mathcal{L}(X,Y)$.

Finally, from Cauchyness of $\{T_n\}$, given a +ve ε , we have

$$||T_{n+p} - T_n|| < \varepsilon$$
 for $n \ge n_0$ and $p = 1, 2, \dots$

Take
$$||x|| \le 1$$
 in X , So $||T_{n+p}(x) - T_n(x)|| = ||(T_{n+p} - T_n)(x)||$

$$\leq ||T_{n+p} - T_n|| ||x|| \leq ||T_{n+p} - T_n|| \cdot < \varepsilon \text{ for } n \geq n_0$$

Let us pass on limit as $p \to \infty$, then we have

$$||T(x)-T_n(x)|| \le \varepsilon$$
 whenever $n \ge n_0$

This is the case whenever $||x|| \le 1$; taking sup we have

$$\sup_{\|x\| \le 1} \|T(x) - T_n(x)\| \le \varepsilon \text{ whenever } n \ge n_0$$

Now
$$||T - T_n|| = \sup_{\|x\| \le 1} ||(T - T_n)(x)||$$

= $\sup_{\|x\| \le 1} ||(T(x) - T_n(x))||$

 $\leq \varepsilon$ whenever $n \geq n_0$

So we obtain $\lim_{n\to\infty} T_n = T \in Bd\mathscr{L}(X,Y)$ in operator norm.

The proof is now complete.

Example 3.3.1. Show $Bd\mathcal{L}(R^n, R^n)$ is finite dimensional with dimension n^2 .

Solution: By matrix representation theorem we know that every member $T \in Bd\mathcal{L}(R^n, R^n)$ has a representative matrix of order $n \times n$ (i.e. a square matrix of size n). With respect to a fixed basis in R^n , we also see that $Bd\mathcal{L}(R^n, R^n)$ and the linear space $m_{n \times n}$ is finite dimensional with $Dim(m_{n \times n}) = n^2$.

Therefore $Dim(Bd\mathcal{L}(R^n, R^n)) = n^2$

Example 3.3.2. A *NLS* (X, || ||) is a Banach space if and only if $\{x \in X : || x || = 1\}$ is complete.

Solution : Suppose (X, || ||) is a Banach space; then the given set $\{x \in X : || x || = 1\}$ is a closed subset of X, and hence is complete.

Conversely, suppose $S = \{x \in X : ||x|| = 1\}$ is complete. Now let $\{x_n\}$ be a Cauchy sequence in X, so $||x_n - x_m|| \to 0$ as $n, m \to \infty$

Therefore $\| \|x_n\| - \|x_m\| \| \le \|x_n - x_m\| \to 0$ as $n, m \to \infty$. Thus scalar sequence $\{\|x_n\|\}$ is Cauchy, and by Cauchy General Principle of convergence $\{\|x_n\|\}$ is convergent; put $\lim_{n\to\infty} ||x_n|| = \alpha$. If $\alpha = 0$ we see $\{x_n\}$ to be convergent in X and we have finished. Or else $\alpha > 0$. Without loss of generality we assume that $\alpha = 1$. Let us

put
$$y_n = \frac{x_n}{\|x_n\|}$$
 making $\|y_n\| = 1$ *i.e.* $y_n \in S$. If possible, let $\{y_n\}$ be not Cauchy.

Then there is a +ve ε_0 (say) and there are indices $n_k (\geq k)$, $m_k (\geq k)$ such that

$$||y_{n_k} - y_{m_k}|| \ge \varepsilon_0, k = 1, 2, \dots$$

or,
$$\varepsilon_{0} \leq \left\| \frac{x_{n_{k}}}{\|x_{n_{k}}\|} - \frac{x_{m_{k}}}{x_{m_{k}}\|} \right\| \leq \left\| \frac{x_{n_{k}}}{\|x_{n_{k}}\|} - x_{n_{k}}\| + \|x_{n_{k}} - x_{m_{k}}\| + \|x_{m_{k}} - x_{m_{k}}\| \right\|$$

$$= \|x_{n_{k}}\| \left| 1 - \frac{1}{\|x_{k}\|} + \|x_{m_{k}}\| \right| 1 - \frac{1}{\|x_{m_{k}}\|} \to 0 \quad \text{as} \quad k \to \infty ; \quad \text{arriving} \quad \text{as}$$

$$-||x_{n_k}|| \left| 1 - \frac{1}{||x_k||} \right| + ||x_{m_k}|| \left| 1 - \frac{1}{||x_{m_k}||} \right| \to 0 \quad \text{as} \quad k \to \infty; \quad \text{arriving} \quad \text{at}$$

contradiction that ε_0 is +ve. Therefore we conclude that $\{y_n\}$ is Cauchy in S by completeness of which let $\lim_{n\to\infty}y_n=y_0\in S$. That is $\lim_{n\to\infty}x_n=\lim_{n\to\infty}\|\,x_n\,\|\,y_0=y_0$.

Hence $\{x_n\}$ is convergent in X and X is shown as a Banach space.

EXERCISE A

Short answer type questions

- 1. Let X be the linear space spanned by f and g where $f(x) = \sin x$ and $g(x) = \cos x$. For any real θ , let $f_1(x) = \sin(x+\theta)$ and $g_1(x) = \cos(x+\theta)$. Show that f_1 and g_1 are members of X, and they are linearly independent.
- 2. Let A and B be two subsets of a NLS X and let $A+B = \{a+b : a \in A \text{ and } b \in B\}$. Show that if A or B is open then A + B is open.
- 3. Let $m_{2\times 2}$ be the linear space of all real 2×2 matrics and $E = \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}$.

If $T: m_{2\times 2} \to m_{2\times 2}$ is taken as T(A) = EA for $A \in m_{2\times 2}$, show that T is a linear operator.

- 4. If C is a convex subset of a NLSX and $x_0 \in X$, and α is a non-zero scalar, show that $x_0 + C$ and αC are convex sets.
- 5. Show that $T: C[a,b] \to R$ (real space with usual norm) defined by the rule :

$$T(f) = \int_a^b t f(t) dt$$
; $f \in C[a, b]$.

Show that T is a bounded linear operator.

EXERCISE B

- 1. Let A and B be two subsets of a NLS X, and let $A + B = \{a + b : a \in A \text{ and } b \in B\}$. If A and B are compact, show that A + B is compact.
- 2. Let M be a closed linear sub-space of a NLS(X, || ||), and X/M be the quotient space, and $T: X \to X/M$ where T(x) = x + M for $x \in X$.
 - Show that T is a bounded linear operator with $||T|| \le 1$.
- 3. Show that the space of all real polynomials of degree $\leq n$ is the closed interval [a,b] is isomorphic to the Euclidean (n+1)-space R^{n+1} .
- 4. Let (X, || ||) and (Y, || ||) be NLS over same scalars and $F, T: X \to Y$ be bounded linear operators such that F and T agree over a dense set in X, show that F = T.
- 5. If X is a finite Dimensional NLS, and Y is a proper sub-space of X, then show that there is a member $x \in X$ with ||x|| = 1. satisfying dist(x, Y) = 1.