UNIT 4

(Contents : Bounded Linear functionals, sub-linear functionals, Hahn-Banach
Theorem; Its applications, Conjugate spaces of a NLS, Canonical mapping, Embedding
of a NLS into its second conjugate space under a linear isometry, reflexive Banach
space; Open mapping theorem, Closed Graph Theorem.).

§ 4.1 LINEAR FUNCTIONALS :

Let (X, || ||) be a NLS over reals/complex numbers.

Definition 4.1.1. A Scalar-valued Linear operator f over X is called a Linear
functional.

For example if X = Banach space ([0,1] with sup norm, then f : X — Reals
1
(with usual norm) is a linear functional when f(x)= Io x()dt, xeC[0,1].

Explanation : Linear functionals are special kind of Linear operators, and thus
enjoy all the properties of Linear operators like sending dependent set of the domain
into a similar such elements in range.

Let us consider the collection of all continuous (bounded) linear functionals
over X i.e. we have the space Bd.Z(X,R) whenever X is a real NLS. We have seen
that the space Bd.Z(X, R)is always a NLS with operator norm || f'||; fbeing a member
of BdZ(X,R). We have also seen that the NLS Bd.Z(X,R) is a Banach space
because R is so.

Definition 4.1.2. The space Bd.Z(X,R) denoted by X* is called first conjugate
space (Dual space) of X.

Thus first conjugate space or simply conjugate space X* of any NLS (X, || ||) 1s
always a Banach space irrespective of X being complete or not.

By a similar construction one can produce Bd.Z(X*,R)= the space of all

bounded linear functionals over X*; this Banach space X** = (X*)* is called second
conjugate (Dual) space of X; and so on.

Most of theory of conjugate spaces rests on one single theorem, known as famous
Hahn-Banach Theorem that asserts that any continuous linear functional on a linear
subspace of X can be extended to a continuous linear functional over X by keeping
the norm-value of the functional unchanged. The proof of Hahn-Banach Theorem is
lengthy but necessarily indispensable item in Functional Analysis.
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Before we take up Hahn-Banach Theorem in setting of a NLS we proceed as
under :

Definition 4.1.2. Let X be a real linear space. Then p : X — Reals satisfying (i)
plx+y)<p(x) + p(y) for all x, y € X and (i) p(cx) = ap(x) forall 20, x € Xis
called a sub-linear functional.

Note : Condition (i) above is known as condition of sub-additivity and condition
(i1) above is called positive homogeneity.

It is not difficult to see that norm function in a NLS X is a sub-linear functional
over X,

Theorem 4.1.1. (Hahn-Banach Theorem in a linear space)

Let M be a subspace of a real linear space X, and p is a sub-linear functional
over X and f is a linear functional on M such that f{x) < p(x) for all x € M.

Then there is a linear functional /" over X which is an extension of f (over M)
such that

F(x) < p(x) forall x e X.
The proof of this Theorem rests upon following Lemma.
Lemma 4.1.1. Suppose M is a subspace (# X) of a real linear space X and

Xg € (X\M) Let N be the subspace spanned by A and {x,} ie. N =[M U{xy}];

suppose f : M — R is a Linear functional such that
f(x) < p(x) for all x € M, where p : X — R is a sub-linear functional (over X).
Then f can be extended to a linear functional /* defined on N such that
F(x) <p(x) forxe N.
Proof : Since f(x) < p(x) over M, we have for y,, y, € M.

JOr=32)=F0)-F W) < pOr =)= pO) + %) — Y2 —Xp)
< p +x0)+ p(=y2— %)

of, —p(=¥,=%)=f () S PV +X0) =S (V) oo

(separation of terms involving y, and y,)

Now fix y, and allow y, to change over M. From (1) we see that the set of reals

{=p(=y2 —x0) = f ()} possesses sup.

Put a= sup {—p(=y, —x,)— f(»,)}; and in a similar argument, put
WeM
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b= yIQL{P(yz +x0)— f())}. The relation (1) says, g<p.
1

Take a real ¢, between a and b ie. a<c,<b
Therefore as y € M we have
—py—-x)-fW)<co <py+x)-fQ) 2)
Since x, ¢ M , we write X, € N as x = y+aX,, and this representation is unique.
Consider F': N — R defined by the rule :
F(y+axy)=f(y)+ac,, as (y+axy)eN (yeM & o a scalar). It is easy to
check that 7 is a linear functional over N such that 7(y) = f(y) as yeM c N .

In other words F'is an extension of f from M to N. We verify further that

F(x) < p(x) for all x € N. To achieve this we are to consider following two
cases : When x € N, we have x =y + ax,,, where o is a scalar.

Case Il . When o > 0; we consider R H.S. of inequality (2) with y replaced by

l~ 1 1 < l _ X
a,thnglVeS co_p[aeroj f{ j

(94

Multiplying throughout by o and using the fact that p is sub-linear we have

f)+acy < p(y+axg)
or, F(x)< p(x)

Case II. When o < 0, we use L. H.S. of inequality (2) with y replaced by %.

This gives rise to

Ao
or, —p[%—xojﬁc(ﬂrf(%j.

Multiplying throughout by o and reversing the sign we have,

(—a)p[—g—xojmco +f)
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Since — o0 > 0, we have p(y+axy)=ac, + f(y)
or, p(x)=>F(x)
or, F(x)< p(x)
When o = 0, we readily see F'(y)= f(y). The proof of Lemma is now complete.

Proof of Theorem 4.1.1. To prove the theorem we invite partial ordering in a
set and use Zorn’s Lemma which says that in a partially ordered set if every chain
has an upper bound, then there is a maximal member in the set.

Here let I' denote the collection of all linear functionals { f} such that each f
is an extension of f such that f(x) < p(x) over domain of f= DJ;.

Lemma 4.1.1 tells us that I" is non-empty. Let us partially order I" as for fl jz el
we say, fl < jz

if J;z is an extension of j‘l with Dﬁ DDJ;1 , and J;z :fl over D/;l,

We may verify that « is a partial order relation in I" where we show that every
chain (totally ordered subset) in I" has an upper bound in I'. To that goal, let 7 ={ fa}

be a totally ordered subset of I". We find some member f eI to act as an upper

bound for =

Construct f whose domain = K;D 7o I XE KO-!)D 7. there is a member « such
that XD 7, and let f (x) = f45(x)

By routine work we verify that K;D 7, 1s a sub-space of .X; taking X,V € \O-!JD 7
we find two indices ¢ and @, such that xeD; and YD}

a @

Since 7 is totally ordered either D 7 cD 7 or D R Djv , and in either of

the cases we have
(x+y)evD; and similarly @¥€V D, and YD is a sub-space of X.
[24 fa [24 fa [24 fa

Finally we show f is well-defined.

Suppose xec D P and x ¢ DJ; ; by definition
@ B

F@) = fo(x) and F(0)=f3()
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By total ordering of 7 either fa is an extension of ]; 5 Or vice-versa.

So fa (x)= fﬁ (x). Thus we have
F(x) < p(x) for x €D and for any member fa of 7, we have faaf. So
f eI is an upper bound of z So we apply Zorn’s Lemma to obtain a maximal
member (say) / in I And F is the desired extension of f as a linear functional with

F(x)< p(x) for all xec X ; that domain of /" equals to X follows maximality of F

Otherwise by argument as above one can have an extension of /' to some other
functional—a contradiction of maximality of /% The proof of theorem is now complete.

Remark : Theorem 4.1.1 is also true for complex spaces, for which one has to
furnish proof.
Theorem 4.1.2. (Hahn-Banach Theorem in a NLS).

Suppose fis a bounded linear functional on a sub-space M of NLS X. There is a
bounded linear functional /" which is an extension of f from M to X having the same
norm as that of f.

Proof : If xcAs we have | f(x)[<|| fIlIlx].
Define p: X — R by the rule :

P = fIlllx]| for xe X .
Then we verify that p is a sub-linear functional over X.

Such that f(x)< p(x) for xeM.

Now apply Theorem 4.1.1 (Hahn-Banach Theorem in real space) to get a linear
functional /" which is an extension of f from A to X such that

|F(x)|<p(x) forall xe X.

ie. |F(X)|<||fllllx] forall xeX.

This is true for all x e X ; So we conclude that /" is a bounded linear functional
over X with || F'|| <\ Y} (1)

Further, over M we have f(x) = F(x)
So | f(x)|=]F(x)|<||F ||| x| for all xeMs . This gives

NrFi<nen 2)
Now (1) and (2) together say || f||=] F ||
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§ 4.2 SOME CONSEQUENCES OF HAHN-BANACH THEOREM :
Application I. Given a real NLS (X || ||) and a non-zero member X, € X . There is
a bounded linear functional I over X such that F'(x,) = x, || with || F'||=1.
Proof : Consider the sub-space M of X spanned by X ;
Then M =[x,]={ax,:« any real scalar}
Define f: M — Reals by the rule :
flaxg)=allx|; as (axg) M.
Then f is a linear functional over M and | f(x)|=a||| %, || =] ax, | for all
x=ax, €M and hence we have || f||<1. i.e. fis a bounded linear functional.
Further if # =ax, 1s a member of M with ||u||=1 we have
| fa) [ =lelllxol[=lax, ||=[lu][=1

A= f@)[=1 giving || f[I=1.
Now an application of Hahn-Banach Theorem gives a bounded linear functional
I over X satistying

F(x)=f(x) xeM
and  [[F[=]lf]=1
This gives F(xy)= f(xy)=|lxy || and || F'||=1.

Corollary : For a non-null NLS (X, || ||), its conjugate space X* is non-null.
(Hints : because F appearing in corollary is non-zero member of X*).

Application II. For every xe X, [[x]|= sup L/ f(x)|.
seoex+ 111

Proof : From Application I we find a non-zero bounded linear functional
Jo € X* such that f,(x)=|x|| and || £, || =1.

S [fo(¥)]

sup > | x||
Therefore, SR/ = 1A
| f ()]
: sup L8> x|
1.e. f(#O)eX* || f || ............... (l)
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On the other hand, if f is any non-zero member of X*, we have

|f <l AN xl
or % <[[x|l, r.h.s. being independent of f
weave, s W< @)
/()]

From (1) and (2) one has ||x||= sup .
reoex 17l

Corollary : If f(x) = 0 for every non-zero bounded linear functional f e X *,
then x=0 in X.

Application IIL. Let M be a closed subspace of X and M # X, if u e (X \M)
d=dist(u,M)= Inf ||lu—m||.
and (u, M) miﬂl I

Then d > 0, and there is a bounded linear functional f e X * such that
(1) filx)y=0 for xeM
(i) Aw)=1
and  Gil) /1=
Proof : Here M is a closed sub-space (£X); so d > 0.
Take N = Linear subspace spanned by M and u
i.e. N=[Mu{u}]; So every member of N is of the form m + fu where 7 is a
real scalar, and meM .

Define g: N — R by the rule :

gm+tu)=t as (m+tu)e N .

It is easy to check that g is a linear functional over N such that g vanishes over
M ie. g(m)=0for meM, and g(u) = 1 (taking 7 = 1).

Now |g(m+lu)|:|l|:|Z|||m+lu||:||m+tu||
Im+a] 2]
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_mr ] _[[mra] 1

S-S a almrl

because d =inf [[u—v|<|lu—-(-2)].
vem

This is true for all member (m+tu)c N ; and hence g is a bounded linear

functional over N with || g < %

1
<L
So, lgl<z L (1)
Again from d =inf ||u—m||; we find a sequence {m,} in M
such that || —m,||—>d as n—> o
ie. lmlflu—m,|=da (2)
Now | g(m, —u)|<| g||[|m, —ul|
o,  |g(m,)-g@)|<[glm,—ul
or, |0-1|<||g||||m, —ul; (g vanishing over M and g(u) = 1).

o,  1<|[gllllnm, —ul]
Now passing on limit as » —» w0 we produce
I<|lglld

.. 1
giving, IIgIIZg ................ 3)

Combining (1) and (3) we have || g]| Zé.

Finally, Hahn-Banach Theorem says that g has an extension f from N to the
whole space X as a bounded linear functional with || /||=]|| g||; As f and g agree

over A/ — N, we have the result as wanted.

Application TV. Let M be a sub-space of NLS (X, || |) and pz # x; if u (X \M)
such that dist(u, M) > 0, say = d.
Then there is a bounded linear functional f < y * satisfying
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(1) F(x)=0 over M (for x € M)
(i) Fu)=d
and (iii) || F||=1.
Proof : Let N = Linear sub-space spanned by M plus u, ie. N =[M U{u}]

Now define f: N — Reals by rule :
Sfim + tu) = td (d as above), where m + fu is a representative member of
N(m € M, t a scalar).
Clearly fis a linear functional over &, such that for 7 = 0, f vanishes over M and

fay=d@=1).

Also for ¢t £0, ||m+fu||:||—f(—%_”)|| (here %EM)

m
=] -——ul=[t]d

So, | f(m~+tu)=|t|d <||m+tu||; this inequality stands even for 7 = 0.

That means, fis a bounded linear functional over N with || /|| <1.

For >0, we find by Infimum property, a member meps such that

||m—u||<d+e.

Put y=-"M1"4 , making ||v||=1 and ye N (because, v is the form m'+¢'u).

|2 = |

_d d _ d .. _
SO: |f(v)|_||m_u||>d+e_d+e||v||(°||V||_l)

That means, || 7> dd . Now this is true for every +ve €, and taking € — 0,
+e

we find || /|| >1.
ie. | fl=zt 2)

Combining (1) and (2) we find || / ||=1. Now we apply Hahn-Banach Theorem
to find an extension F' of f from N to the whole space X as a bounded linear functional
over X with || || =|| f||; since F’ agrees with f over M, we have the result as desired.
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§ 4.3 CONJUGATE SPACES X*, X**, ... OF A NLS (X, || ||) :

Let (X, || ||) be a NLS, then X*, X** = (X*)* .. are first, second, ...conjugate
space of X.

Theorem 4.3.1. If X* is separable, then so is X.
Proof : Suppose D is a countable dense subset of X*. Let D, be the subset of D
which is dense in the surface {f € X*:|| f||=1} of the closed unit ball of X*; let us

write Dy ={f, /5,..» f, ...} with || f,||=1 for all n. From || f,|=1, we find a

member say x, with ||x, ||[=1 such that

FACSIEE
Consider the linear sub-space L of X spanned by {x,, x,, ...., X,,}
ie. L=[x,x,, ..,x,...]and Pt M= | (closure of ). The M is also a linear
sub-space of X.
Suppose, M=xX (1)

Take x,e(X\M), then d =dist(xy,M)>0 because M is closed.

By application of Hahn-Banach Theorem we obtain a bounded linear functional
I e x * with || F'||=1 such that F vanishes (/" = 0) over M and F'(x,)#0.

Clearly / is a member of the set {f e X*:|| f||=1} and F(x,)=0 for all n.
Now f,(x,) = f,(x,) = F(x,)+ F(x,) gives
| (e ) <] () = F(x,) |+ F(x,) |
= (f = )x,) |

1
Thus = <|fu () [ <[ f = £ (1%,

or, %<|| J,— Il for all n; This contradicts that {f,, /5, ..., f,,..} is dense in

theset {feX*| f|=1}.
So, M =X
Thatis L = X,
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Now L contains that subset formed by finite linear combinations of x|, x,,.., x,,,..
with rational coefficients; and that subset becomes countable dense in X. The proof
is now complete.

Remark : Converse of Theorem 4.3.1 is not true. The NLS [, consisting

of all those real sequences x=(x,X,..x,,....) such that Z|xi | <% with norm
i=1

x|l :Z| X; | is separable but its conjugate space [, consisting of all bounded
i=1
sequences of reals is not separable.

Example 4.3.1. Let (X, || ||) be a NLS over reals, and let x;,x, € X with x; #X,.
Show that there is a bounded linear functional f/ over X such that f(x)= f(x,).

Solution : Here x,x, € X with x; #x, i.e. x —x,#(Q inX So an application
of Hahn-Banach Theorem there is a bounded linear functional f e X *(f #0) such
that

S —x)#0
or, f(x)=f(x)=0
or, flx)#*f(x).
Given a NLS (X, || ||) we show that there is a natural embedding of X in its

second conjugate space X** through a mapping, called the Canonical mapping that
we presently define using X*.

Theorem 4.3.2. Given x e X, let x(x*)=x*(x) for all x*c X*. Then % is a

bounded linear functional over X*, and the mapping x —s ¥ is a Linear Isometry of
X into X**,

Proof : Let xe X, x* x,*e X *; then we have

X0 * 4% = (0 F 42, %)) = X () 4 * () = X0 ) + x(x,%).
Also if A is any scalar we have X(Ax*)=(Ax*)(x) = Ax, * (x) = Ax(x*).
Therefore % is a linear functional over X*.

Now we show that || x|/ = sup {| x*(x)|}.
[lr¥]<1
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By Hahn-Banach Theorem we find a member x*e X * with || x*||=1

and || x*(x) || =} x|

Therefore || x||< sup{|x*x)|} . ¢))
fixHi=i

Again  [[x*() || <[] x*[[[ x[|<]| x|l when {|x*||<1]

Therefore || x||=|x*(x)| when || x*||<1

Thus | x||> sup |x*(x)]. et )
e

From (1) and (2) we have
|| x]| =sup{| x*(x)|: x*€ X * with || x*||<1}.
which is =sup{|x(x*)|: x*e X * with || x*||<1}
SELD
It shows that % is a bounded linear functional over X* with || X||=]|| x]|.
Finally, let x,x,€ X and x*e X *, then
(3 +X)(x%) =x*(x +x,)
=x*(x)+x*(xy)
=3, (x*) + X, (x%).
Similarly for any scalar & we have (&;l )(x*) = x*(0x;)
=ox*(x)
=X, (x*)

Therefore the mapping x — % is linear; and since || X||=|| x|, this mapping is
Isometry.

That is, x — % is a Linear Isometry of X onto the linear sub-space {x:xe€ X*}
of X**,

Definition 4.3.1. Given a NLS (X, || ||), Linear Isometry x — % is called the
Canonical mapping of X into its second conjugate space X**.
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Definition 4.3.2. A NLS (X, || ||) is called reflexive if and only if the Canonical
mapping x —» ¥ maps X onto X**

Thus a necessary condition for X to be reflexive is that X is a Banach space.
However there are Banach spaces without being reflexive.

§ 4.4 OPEN MAPPING THEOREM AND CLOSED GRAPH THEOREM :

Like a big and important theorem of Hahn-Banach we have another big theorem
known as open mapping theorem in Functional analysis. There one is concerned
with open mappings that send open sets into open sets. Open mapping theorem
states conditions under which a bounded linear operator shall be an open mapping.

Definition 4.4.1. Let X and ! be two metric spaces. Then a mapping f: X — ¥
is called an open mapping if (& is an open set in X, its image under f = () is an
open set in V.

Theorem 4.4.1. Let (X, || ||) and (7, || ||) be two Banach spaces; and 7": X — Y be
a bounded linear operator which is onto (surjective). Then 7' is an open mapping.

The proof of the above theorem shall rest on following Lemma that we prove first.

Lemma 4.4.1 Let 7: X — ¥ be a bounded linear operator which is onto and let
By = B,(0) be the open unit ball in X, then 7'(B;) contains an open ball centred at 0
in Y.

Proof : We may complete the proof in three stages as under :

(a) T(By) (closure of T'(B,)) contains an open ball B*.
(b) If B, = open ball Bzin 9 in X, then 7'(B,) shall contain an open ball 7,

centred at 0 in Y.
and (c) 7'(B,) contains an open ball cenred at 0 in Y.

(a) Consider open ball B, =B,(0)c X . If xc X, we find large real & so that
2
X € kB, . Therefore we write

w0

X = ) kB, ; Since T is onto and linear, we have

Y=7(X)= T[kgl kBlj = kT(B)= 2 kT(Bl) , taking closure did not add
more points to the Union = ¥ As Y is a Banach space, we invite Baire Category
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Theorem to conclude that one component say k7'(B;, contains an open ball. That means

T'(Byy contains an open ball, say, B* = B(y,, ). S0 we write
B*~=y, =B(g,&) < T(B)~ o

(b) We show that B*—y, c T(B,), where B, stands as appearing in theorem.
This is accomplished by showing :

T'(B) -y, <T(By)

Take yeT(B))-y,; then (y+y,)e7(B;) and remembering that y, e 7'(B))

we find

u,=T(w,)eT(B)) such that il_f)g”n =V+X

v, =T(z,) € T(B,) such that limv, =y,

. . . 1
Since w,,,z, € B, and B, is of radius = 5 we have

1.1
19 = 20 <19, 14112, [l < S+1 =15 So that v, —z,) € B,
From I’(w,—-z,)-T(w,)-T1(z,)=u,—v, >y as n—> .

Therefore, y e T(B,). Since y € (T (Bl)—yo) is an arbitrary we have shown

I(B) =y < 1(By)
From B*-y, = B(0,¢) c T(B;) -y, above we have
B*—y,=B0,e)cT(By) (1)

Take B, =B(0,27")c X. Since 7 is linear, we have I'(B,)=2""T(B,);

From (1) one obtains

V., =B(0,%)cT(B,
© 2n) By ()
(c) Finally, we show that ¥} = B(0,18) c T(B,).
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Take y el . From (2), for n =1, we have J] CTBI).

Hence y e 7'(B,) and we find v e 7(B,) such that ||y—V||<%

Now vy e 7T(B,) implies ve T(x;) for some x, € B,.

Therefore || y = 7(x) || <

Using this and (2) above with 7 = 2 we see that (y—7(x)) € V; = T(B,).
As before we find x, € B, such that || y—=70q) [ =7(xy) |l <%

Hence (y—T(x;)-T(x,)€V; c T(B;), and so on. In nth step we take x, € B,
such that

L B 3)

- 1
Put z, =x, +x,+..+x,; Since x, € B,, we have | X || <5r that means n > m,

w0

n
Iz, =z ll< D X ll< Y] - which — 0 as m .
k=m+1 k=m+1

So {z,} is Cauchy; let lim z, = x (X is a Banach space).
H—>0

Also x € B, since B, has radius = 1, and

[e¢] [e¢] 1 B

Z”xk ||<Z—k—1~

=l =12
As T is continuous, we have 1i_r)n 17(z,)=T(x) and (3) shows that 7(x) = y.
So yeTl(By).

Proof of Theroem 4.4.1. If A is an open set in X, we show that 7(4) is open in

Y, by showing that every y € T'(x) € T'(A) attracts an open ball centred at y = 7'(x) within
T(A).
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Take y =7(x)eT(A). As A is open there is an open ball centred at y — 4. Hence

A — x contains an open ball centred at 0 € X . Let radius of that open ball = » Put k= % or
1
k
that 7 (k(A—x)) = k[T(A)—T(x)] contains an open ball centred at 0, and so does

1(A) — T(x). Hence 7(A4) contains an open ball centred at y = 7(x). As y is an arbitrary
member of 7(4), we have shown that 7(4) is open.

r =—. Then k(4 — x) contains the open unit ball 5(0.1). Now Lemma 4.4.1 says

Corollary : Under open mapping theorem if 7 is bijective, T 1 is bounded.

Example 4.4.1. Let 7 : R* = R be defined by 7(x,y) = x for (x,y) € R*. Show
that 7'is an open mapping. Examine if 7": R* - R* where Ti (x, y)=(x, 0), (x, y) € R
is an open mapping.

Solution : Here 7': R> — R given by 7(x, y) = x is a projection mapping and we
know that it is a bounded linear operator such that 7" is onto. So we apply open
mapping theorem to conclude that 7" is an open mapping (In fact, 7 sends open
circular disc of R onto an open interval).

If7: R > R*is given by 7(x, y) = (x, 0); there Image of an open circular disc
under 7' is not like that. So 7 is not an open mapping.

We know that all linear operators are bounded. For instance, differential operator
is an unbounded linear operator. Closed Linear operators that we introduce presently
behave satisfactorily in this respect. Another important theorem, known as closed
Graph Theorem states sufficient conditions under which a closed linear operator on
a Banach space is bounded.

Let (X || ||) and (¥, || ||) be NLS with same scalars.

Definition 4.4.2. A linear operator 7 : X — Y is called a closed linear operator
if its graph G(T) ={(x,y)e (X xY):y=T(x),xe X}1is a closed set in NLS X xY
with norm | (x, ») | =]l x|+ ¥ [l, (x,»)e (X xT).

Theorem 4.4.2. Let X and ¥ be Banach spaces, and 7': X — ¥ be a closed linear
operator. Then 7 is a bounded linear operator.

Proof : First we verify that X xY with norm ||(x,y)||=|x|[+]|»| as
(x,y)e (X xY) is also a Banach space.

Let {z,=(x,,y,)} be a Cauchy sequence in X xY.

Then ||Zn_Zm ||:||xn_xm ||+||yn_ym ||
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Thus ||x,-x,,||<|lz,—2z,]||— 0 as n,m — oo shows that {x,}is Cauchy in X,

and since X is complete,

let lim x, =x< X, and similarly let 1i_r)n y,=yeYr.
H—>0 n—>w

These together imply that lim z, =z = (x,y) € (X x¥) .Thus we see that y xy
n—>0

is a Banach space. Graph G(7) being a closed set in X xY, it follows that G(7) is
complete (infact, G(7) is a Banach space as a subspace of X xY)

Consider a mapping p : G(T) — X given by p(x, 7(x)) = x € X. Then p is linear
operator over (7). p is also bounded, because

1 pCe T [[= [ x NI <[[x [+ T(x) | = (x, T(x)) ]
Further, p is bijective; with pi1 given by

p ' X - G(T') mapping x — (x, T(x)) as x e X . By applying open mapping

theorem we find pi1 to be bounded. Hence there is a +ve K such that
||(x,T(x))||£K||x|| for xeX.

Therefore || 7C)[[<|[ TGO+ x[|=11 G, TG [ < K[ x ]|
That means 7' is bounded. The proof is complete.

Example 4.4.2. If X and Y are Banach spaces over same scalars, and 7: X — ¥
is a linear operator. Show that Graph G(7) is a subspace of X x7.

Solution : Let (xl, T (xl)) and (xz, T (xz)) be two members of G(7) as x,x, € X,
where G(T) ={(x,T(x)):xe X} (X xY).

Then (xl,T(xl))Jr(xz,T(xz)) = (xl + X5, T(x1)+T(x2))
=(x +x,, I(x,+x3)) (7 'is linear)
eG(T).
If A is any scalar l(xl,T(xl)) = (/'Lxl,/'LT(xl)) = (/'Lxl,T(lxl)) eG(T).
Therefore G(7) is a sub-space of (X xY).
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EXERCISE A

Short answer type questions

1.
2.

Show that a norm in a linear space X is a sub-linear functional over X.

Show that a sub-linear functional p in a linear space X satisfies (a) p(0)=0 and (b)
p(=x)=-p(x) for xe X .

Show that non-null NL.§' X has a non-null conjugate space X*.

If f{x) = f(y) for every bounded linear functional on a NLS X, show that x =y in X.

If X and Y are Banach spaces show that the Null space N(7) of a closed linear
operator 7' : X — Y is a closed sub-space of X.

If two non-zero linear functionals f; and f, over a linear space have the same
Null space, then show that f; and £, are proportional.

EXERCISE B
Let Xbe a NLS, and x, € X suchthat | f(x;)|<c forall feX* with| f|=1,

show that || x, ||<c.
If X is a NLS which is reflexive, show that X* is reflexive.

If X and Y are Banach spaces over the same scalars, and 7' : X — ¥ is a closed
linear operator, then show that (a) if C is compact in X, 7(C) is closed in ¥, and
(b) if K is compact in ¥, 7 '(K) is closed in X.

Let f be a non-zero linear functional in a linear space X, and x, is a fixed element

in (X\N(f)), (N(f)=Null space of f ={xe X : f(x)=0}), then any member

x in X has a unique representation x =ax,+y where y e N(f). Prove it.

b
Show that 7' : C[a,b] — R defined by 7'(f)= j fdt, f €Cla,b] is a bounded
linear functional over C[a,b] and find || 7'||.
Show that f defined over C[-1,1] by the rule :

F@) =[xt~ [ xat, xeCl-11]

is a bounded linear functional over C[-1, 1] and find || f]].
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