UNIT 5

(Contents : Inner product spaces, Cauchy-Schwarz inequality, I.P. spaces as NLS,
continuity of I.P. function, Law of parallelogram, orthogonal (orthonormal) system
of vectors, Projection Theorem in Hilbert space H; Reisz Theorem for a bounded
linear functional over H, Bessel’s inequality, Grahm-Smidst orthogonalisation process,
complete orthonormal system in H.)

§ 5.1 INNER PRODUCT SPACE

In a Normed Linear space principle operations involved are addition of vectors
and scalar multiplication of vectors by scalars as in elementary vector algebra. Norm
in such a space generalizes elementary idea of length of a vector. What is still more

missing in an NLS is an analogue if well known dot product a.b = ab +a,b, +azb;,

and resulting formulas among other things like (i) length | a| = Va.a and (ii) relation
of orthogonality a.b = 0. These are important tools in numerous applications.

History of Inner product spaces is older than that of NLS. Theory had been
initiated by Hilbert through his work on integral equations. An inner product space
is a Linear space with an inner-product structure that we presently define.

Suppose X denotes a complex Linear space.

Definition 5.1.1. X is said to be an Inner Product space or simply L.P. space if
there is a scalar-valued function known Inner product function, denoted by, <, >
over XX satistying

IP 1) <x+yz>=<xz>2+<yz> forally, y,z € X

(LP. 2) <o, y> = a<x, y> for all scalars o and for all x, y € X

(LP.3) <y, x>=<x,y> forallx, y e X bar denoting complex conjugate.

(IP.4) <, x> >0 forallxe Xand itis=01ifand only if x=0 in X
From L.P. axioms above one can immediately derive the following :

(a) <x,ay>=a <x,y> for all scalars oc and x, y € X

(b)) <Ax+uy,z>=A<x,z>+u<yz> for all x, y, z € X and for all
scalars A, U.

©) <x,ay+ fz>=<ax+fz,x>=a<y,x>+p<z,x>
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—a<yx>+f <z, y>=a<x,y>+f<x,z> Dbecause
conjugate of a complex scalar is itself.
Example 5.1.1. Unitary space ¢” =¢x¢x...x¢ whose ¢ 1s the space of all
n copies

complex number is an [.P. space with [.P. <> given by

<Z, W)= W+ ZyWy + 2, W, where z2=(z,25,....2,) and

Solution : Here <z,w > =z +z,W, +....+z,W,

<Ww

'~ 0

z>; and this (LP. 3); rest of axioms are routine
check-ups.

In an IP. space (X, <>) of x € X, let us define || x||*=< x,x > which is always
a non-negative quantity and is equal to O if and only if x=0 in X

Theorem 5.1.1. Every L.P. space is an NLS. To prove this Theorem we need
help from following Lemma that is an independent proposition as well.

Lemma 5.1.1 (Cauchy-Schwarz inequality/C-S inequality)
In an LP. space (X, <>)ifx, y € X,
[<x,y> < |lx [y

Proof : Without loss of generality take y # 0 in X (taking y =0 LH.S. =RH.S.
For any scalar A we have

lx+ 2y (=0
o, <x+Ay,x+Ay>=0
o, <x,y>+Al<y,y>+A<x,y>+A<y,x>>0
or, x| +|APy]IP+A<xy>+A<x,y>=0

<X,y >
< .y>

Let us now choose A —=—

_ <xy>
[Fl&
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Then L.H.S. of above inequality

2 2 2 2
:||x||2+|x’y| _|<x,y>| _|<x,y>| :||x||2—|<x’y>|
2 2 2 2
b3 [yl [yl B3
Therefore above inequality assumes the form

2 |ex,ysP
x| -2
¥l

or [<x,y><| x|yl

>0

Proof of Theorem 5.1.1. Norm axioms (N.1) and (N.2) follow from (LP. 4);

and the fact ||ox|*= <ax,ax>=a@ <x,x>=|a | x|
This gives ||ax|f=| el x||
For triangle inequality (N.3), let x, y € X, then we have
||x+y||2:<x+y,x+y>:||x||2+<x,y>+<y,x>+||y||2.
Thus |+ y||* <[ x| +|<x,p >+ < y,x > +]| y |

2 2
=[xl +2]<x,y >+ [yl

<[ x| 2| x[[| ¥ | + 1| »I* by Lemma 5.1.1.

=(lxl+1yID*.
Therefore ||x+y||<||x]|+|y].
The proof is now complete.

Remark : Equality sign in C-S inequality holds if and only if y = 0 or
O=||x+Ay ||2 i.e. x = Ay or x + Ay = 0 showing that x and y to be linearly dependent.

Theorem 5.1.2. In an L.P. space (X, <>), show that [.P. function is a continuous
function.

Proof : Let {x,} and {y,} be two sequences in X such that lim z, = x and

n
lim y, =y in norm. That is to say, 71,1330” x,— x| =0 ;grgollyn -

Now |<x,,y,>—<x,y>=|<x,,y,>—<X,y>+<Xx,,y>-<X,y>|

=<x,,y,—y>+<x,-x,y>
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S|<xn:yn_y>|—i_|<xn_x7y>|

<I1x, (1L =y [T+ [, = 11

Since lim x,, =x in norm, {x,} is norm bounded; So there is an M (+ve) such
X—>0

that ||x,||<M for all n.
Therefore above inequality assumes the form
<M|y,-yll+lylllx,-x||—>0 as mn-—>o0. This shows that
lim <x,,y,>=<X,y> and LP. function is continuous at (x, y).

H—>0

Definition 5.1.2. An I.P. space X is said to be a Hilbert space if X is a complete
NLS with norm || || as induced from L.P. function.

Thus every Hilbert space is a Banach space. But opposite is not true.

Very often a Hilbert space is denoted by H and an L.P. space is termed as a pre-

Hilbert space.
Theorem 5.1.3. If x and y are two members in a Hilbert space H, then

lx+y | +]|x=y|*=2] x|* + 2] y||*- (Law of parallelogram).
Proof : Here ||x+y||2+||x—y||2:<x+y,x+y>+<x—y,x—y>
2 2 2 2
=l x|+ <xy>+ <y x>ty +llxl’ - <xy>-<yx> ]|y

2 2
=2[[x[|” #2[[ ¥ [I*-

Remark : In school Geometry it is known that sum of squares raised on sides of
a parallelogram is equal to the sum of squares raised on its diagonals. This is exactly
what is in Theorem 5.1.3 above. Hence the name is Law of parallelogram.

Example 5.1.2. The sequence space /, of all real sequences x ={¢;,&,,...,¢,,...}

with Zlfi |2< o is a real Hilbert space.

i=1

Solution : We know that /, is a real linear space where let us define an LP.

@
function <x,y>= me,- , the r.h.s. series is convergent because
i=1

(Gml<30& P +In P (y=G&n ) Y=0hm el =1 20
By routine exercise we check that all I.P. axioms are O.K. in /,, and /, is an LP.
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. . . 2 O 2

space with real scalars. Further, with respect to the induced norm || X [["= Z| &It
i=1
is also known that /, becomes a complete NLS. Hence /, is a Hilbert space.

Example 5.1.3. The sequence space /,(1 < p <) consisting of all real sequences

|
© p
x=(&,&,,..) with {ZI i |pj < is a Banach space without being a Hilbert
pm)

space with LP. function to induce Banach-space norm.

Solution : We have already seen that sequence space /,(1 < p >o0) is a Banach
1

% P
space with norm || x || Z{ZIQ IPJ ,as x=(£),¢,,..) €/, . We now show that this

i=1

norm does not come from an I.P. function on /,. This is verified by showing that

. . 0
this norm does not satisfy Law of Parallelogram. Take JSZ(L L, m),

~ 0 ! _
Jj—(l,—lam) from lp. Then we find ||)~c||:||)~/||:2%7 and ||3£+Jj||—2
=|lx-

| Therefore, if p#2 parallelogram law fails.

§ 5.2 ORTHOGONAL ELEMENTS IN HILBERT SPACE

Let H denote a Hilbert space.

Definition 5.2.1. (a) Two members x and y in a Hilbert space H are called
orthogonal if <x, y> = 0;

We write in this case x 1 y.

(b) Given a non-empty subset /. of H, an element x € H is said to be orthogonal
to L, denoted by x L y if <x, /> = 0 for every member / € L.

Theorem 5.2.1. (Pythogorian Law) Ifx, ye H and x | y, then
: 2 2 2
@ flx+yIP=lxI" +l»]
P 2 2 2
@) [[x=p"=[[x [+ yl
Proof : (1) ||x+y||2:<x+y,x+y>:||x||2+<x,y>+<y,x>+||y||2

=\ x| +<x,y>+<x,y>+||y|F=| x| + | y|? since <x, y>=0.
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(i1) the proof is similar to above.
Theorem 5.2.2. Every closed convex subset of a Hilbert space A has a unique

member of smallest norm.
Proof : Let C be a closed convex subset of H, and let d = Inf {|| x || : x €C}.

Let {x,} be a sequence in C such that lim || x,||=d. for x,,x, €C we have
n—>0
%(xn +x,,) € C, because C'is convex.

X, tX,

So, >d or, ||x,+x,||z2d (1)

By Law of Parallelogram we have

2 2 2 2
196 =% [17= 2 {15, 17 #2115, [I7 =126+,

2 2 2
<21[x, [I7 + 21 x, [I” —4d"
Since 1i_r)r01O |x,||=d and similarly ||x,||—>das ... (2)
m — oo taking limit n, m — o0 in (2) we get

nl;lr_r}oo | X, — %, [|=0; showing that {x,} is Cauchy in C.

As Cis closed, Let lim x, =xeC. Thus || x||=lim || x, || =d.
n—>0 n—>0
Hence x € C has a smallest norm. For uniqueness of x, let x’e C so that || x'||=d.

x+x
2

x+x

cC and also || ||>d. Again by Law of

By convexity of ' we have

Parallelogram we have

2 2 2
||x+x'||2:||x|| LT Q=T
2 2 2 2
1 2 1 r 2 . ’
< =X +=| X
Uil +d1e P if xex

x+x x+x

= d*; giving || 2 || <d —a contradiction of ||

=2d as

arrived at early. The proof is now complete.
Theorem 5.2.3 (Projection Theorem). Let L be a closed subspace of H and
L # H ; Then every member x € H has a unique representation x = y + z where
ye Land x1 L.
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Proof : If x is a member of L — H ; we write x=x+0 when 0el L.

Let us take x e (H \L), and put
d= {2{ |x—a ||2: dist(x, L) ; Because L is closed we have d > 0,
and there is a sequence {a,} of member a, in L such that
limd,=||x—a,|*=d. (1)
P

Take any non-zero member a in L. As L is a sub-space of H, we have for any
scalar &, (a,+¢&a)e L and therefore

| x—(a,+ea)|’ =d

or, <x-—a,—ga, x—a,—a>>d
— 20 112
of, |x—a,|"—€<x—qa,,a>—e<a,x—a,>+|e|||a| =d.
<x-a,a> . .
Now take ¢ = ———: with such a choice of €, we have

2
lall

2
||2 kx-a,,a>|

||x_an

2
al
2 2
of, <x—a,,a>"<|a| (d,-d)
or, <x-a, a><|allyd,-d )

Inequality holds for a=0 in L; So for any g< [ we have

<a,—a,,a><|<a,-x,a>+|<x—-a,,a>|

ie. |<an—am,a>|£||a||(\/dn—d +\/dm—d) from (*)

Putting a=a, —a,,, we have

<a,-a,,a,-a,><|a,-a,|(Jd,~d+d,-d)

ie.  lla,~ay, I’ <lla,~a,|(Jd,~d +d,~d)
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or. la,—a, ||£(\/dn—d+\/dm—d), whererh.s. = 0as n,m — o by (1).

2

That means {a,} 1s Cauchy in L.
Since L is closed, let 1i_r)n a,=yel.

Now in |<x—an,a>|£||a||m, let us pass on the ,lli_EI}oan =y and get
<x—y,a>=0
i,e. <x—y,0>=0; This is true for any member a in L; Therefore
(x—y)LL Letusputz=x—y
Then we have x =y + z where yel and z L L.
For uniqueness of this representation, let x=y+z=y'+z" where y' €L and

z' L L. Thus y, y' come from L and z,z' | L. Clearly, y—y'=z'—z, and

ly=yV 1 =<y—y,y—y >=<y-y,z—z>=0 where ||z/—z|| L L.
Therefore y = y” and hence z = z". The proof is now complete.

Remark : In representation Theorem 5.2.3. where x =y + z, y is called projection
of x on L. It is obvious that collection M of all elements, orthogonal to /. forms a
sub-space. M is also closed because of continuity of I.P. function. That is why z is
called projection of x on M which is called orthogonal complement of L. Further,
Hilbert space H is then sum of two orthogonal sub-spaces L. and M. Here we see
orthogonal sum is a special case of the Direct sum. Thus projection Theorem 5.2.3
gives a decomposition of any member in Hilbert space H into its projections onto
two complementary orthogonal sub-spaces.

§ 5.3. It is important to know that the general form of a bounded Linear functional
acting on a given space. Such formulae in respect of some NLS are known, their
derivations could be much complicated. Situation is, however, surprisingly simple
for a Hilbert space H.
Theorem 5.3.1 (Riesz Theorem on representation of functional over H).
Let f'be a bounded linear functional over a Hilbert space H. Then f(x)=<x,y>
for all x € H and for some z € H uniquely determined by f such that || z || = || f]].
Proof : If fis the zero functional over H. We take z=0 in H to do the job.

Suppose that f is a non-zero bounded linear functional over H. Consider the null-
space N(f) of f where
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N(f)={xe H: f(x)=0}. Clearly M(f) is a closed linear sub-space of H
without being equal to H.
Take a non-zero z, €L N(f)

Letx € H. Put v= f(x)z, — f(zy)x
So that f(v)=f(f(x¥)z)~ f(f(20)%)
= () f(20) = f(z0)f(x) ; (fis linear)
=0
That means v e N(f); by choice z, is orthogonal to v
So O0=<v,zy>=< f(x)zy — f(29)x, 2y >
= f(x) <2020 >=f(20) <x,25 >
=l z0 I ()= f(20) <%, 20 >
f(z)

B
e TG
[EY

=< x,y> (say), where z =

Giving J(x)= <X,Zp >

LAC) 1
Iz P W

This is the representative formula for f(x) as wanted.

For uniqueness of z, let f(x)=<x,z; >=<x,x, > forall xeH.
Then we have <x,z >=<x,z, > or, <Xx,z;—z,>=0
put x=z—z,; SO <z -2y, -2, >=0 of, || z,—z,|*=0 or, z;=z,
Finally, We have | f(x)|=|<x,z>|<||x]||| z|]
This gives || fII<llz| (1)
Again taking z = x in (1) we have <z,z>= f(z)
or, ||z <[ £z

o, [z|<IFll e )
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Combining (1) and (2) we have || f||<| z]||.

Converse of Theorem 5.3.1. is true. This is what Example 5.3.1 has to say.
Example 5.3.1. Let z be a fixed member in a Hilbert space 4. Show that

f(x)=<x,z> for all x € H is a bounded linear functional over A with
1A I=11=211-
Solution : Here f : H —Scalar such that for x;,x, € H.
Then f(x+X)=<X +X,,2>=<X,2>+<Xy,z>= f(x)+ f(Xy).
And for any scalar @ f(ax)=<ax,z>=a<x,z>=af(x).
Thus f is Linear. Further | f(x)|=|<x,z >/ <[ x|||| z]| (by C-S inequality)
This is true for all x € H. Therefore fis a bounded linear functional such that

Nz (1)
Taking x = z in f{x) = <x, > we have
IzlP=<zz>=f@ < fllz]
or, |lzI<IIfll )
(1) plus (2) gives || .f[[<]lz].

Corollary to Theorem 5.3.1. Every Hilbert space H is reflexive.

Because by Theorem 5.3.1. together example put up above says that every
bounded linear functional over H. i.e. every member of H* arises out of a member
of H and conversely. This correspondence gives rise to an isomorphism between H
and H*; and we say that H is self-dual and this in turn implies that here Canonical
mapping between H and H** is a surjection. Hence H is reflexive.

§ 5.4 ORTHONORMAL SYSTEM IN HILBERT SPACE H.
Definition 5.4.1. (a) A non-empty subset {e;} of Hilbert space H is said to be

an orthonormal system if

(1) i#J, e,+e; ie anytwo distinct members of {¢;} are orthogonal.

and (i1) ||e; ||=1 for every i ie. any vector of the system is non-zero unit

vector in H.
(b) If an orthonormal system of H is countable, we can enumerate its elements
in a sequence say it as an orthonormal sequence.
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For example in Euclidean n-space R” which is a real Hilbert space the fundamental
unit vectors ¢ =(1,0,0,...,0), e, =(0,1,0,0,...,0)...... e, =(1,0,..,0,1) form an
orthonormal system of vectors in R”.

Example 5.4.1. Let 7,[0,27] be the real Hilbert space of all square integrable
functions f over [0,27] with I.P. function

2r
<f.g>=[ fedi;  f.gel, [027].

2r
||f||=1/§f2dl.

1 en(l):M {n=1,2,.)and 0<r<2r.

Var’ N

form an orthonormal sequence in 1,[0,27]; because

Then ey(7) =

0 ifm=#n
2
Io "cosmt cosntdi=1 x ifm=n= 1L,2..
27 ifm=n=0
Theorem 5.4.1. An orthonormal system in H is linearly independent.

Proof : Let {e;} be an orthonormal system in /; and let for a finite subset, say,

e, €y, ... e, of the system we have
a6 +aye, +.....+a,e, =0 where «; ’s are scalars. Then for 1< j <n we have
n n
0=<0,>=(> e, e; )=D a;,<e.e; >
i=1 i=1

=o; <e;e; >=a,; (other terms being zero because of mutual

orthogonality). So «; =, =....=,, =0. That means any finite sub-system of the
given system is linearly independent. Hence proof is done.

Definition 5.4.2. Let {¢;} be an orthonormal system in / and x< H ; Then

scalars ¢; =< x,e; > are called Fouries co-efficients of x w.r.t the system.

Theorem 5.4.2. Suppose {e|,e,,e;,....,e,,...} be an orthonormal sequence in /7,
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then for x € H,

[e¢]
D l<xe > <) x|
i=1

(This inequality is very often termed as Bessel’s inequality).
Proof : Let n be a +ve integer. If ¢; are Fouries coefficients of x w.rt. {e;}, we

have

n n
2
< ||x_zciei|| :< ch zax_zciei>
i=1 i=1
5 n n n
:HxH -\ X Zciei o chewx + Zcieiﬂzckek
i=1 i=1 i=1 k=1
n n n n
:||x||2 —ZEZ. <X,€ >—ch. <el.,x>+ch. <el.,chek >
i=1 i=1 i=1 k=1
n n n n
=llx I = Yge =D e + )Y T <epe
i=1 i=1

i=l k=1
2 $ 2 $ 2 $ 2 2 $ 2
=[xl =Yl P =2l P+ e P =lx? =Yl
i=l i=1 i=1 i=1
n n
Therefore, Y |¢ [P <|[x|? or, Y |<x,e > <|x|P.
i=l i=1

[e'e]
.. . 2 .
This is true for any +ve integer n, and thus Z|< x,¢; >|° is convergent and
i=1

n

Ylex e >f <[lx|P.

i=1
Theorem 5.4.3. In a separable Hilbert space H every orthonormal system is
countable.
Proof : Let £ = {e;} be an orthonormal system in H which is separable. If ¢, # ¢,

we have <e;,e; >=0 and ||e ||=1=]e, ||.
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Therefore <e; —e;, ¢, —¢; >=||¢ I? —<e,e;>—<e;¢>+|e; P=0+1+1=2

2
So, |le;—e;|I"=2
or, ||e,-—ej||:\/§.

By separability of H, we find a countable set {y,,y,,...,),,...; which is dense in
E. So we find two members, say, y; and y; such that

2 2
e, <32 and ||y, e, [ <22
3 3

So \/§:||e,-—ej||:||ei_yi+yi_yj+yj_ej”
<lle;=yill+11y; =y I +11y; —e;ll

242

<=5 +lyi-y

V2

Showing ||y, =y, [[> 5 clearly 7 # j; This establishes an H correspondence

between members of £ with members of a subset of a countable set. Therefore E is
countable.

Gram-Schmidt Orthogolisation Process : Subject is that in a Hilbert space H
one can transform a linearly independent set of elements in H into an orthonormal
system in H by a technique known by above name.

Let x|, x,,... be an independent system of vectors in // (So none is zero vector)

X
Put ¢ =—

I and let y, = x, —c,,¢, Where ¢,; =<x,, ¢, >.

Next we put e, = 2. By verification we see <e,e >=1, <e,,e, >=1,

[ y2[l”
and <e¢;,e, >=0.

Now let y;=x;—(c3 +c306,) where we choose ¢3=<x3,¢ >,

Next we put €3 = H%, and as before we have
3
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We continue this process, if e},e,,...,e;_; have been constructed, let us take

k-1
Vi =X — chiei
i1

Yk

1yl
Inductively, we construct e, as a linear combination of x|, x,,... and x,. This way we

are led to orthonormal system (ey, e,,... e,,...) from (x;, X,,... X,,,...).

Definition 5.4.3. In a Hilbert space A an orthonormal system £ is called a
complete orthonormal system if there is no orthonormal system in H to contain £ as
a proper subset.

where ¢;; =<x;,e; >, so that y, 1s orthogonal to e},e,,...,e;_;; Define ¢, =

For example, in Euclidean n-space R" (a real Hilbert space) the set of all
fundamental unit vectors {e,, e,,....e,} where e, =(0. 1 0),j=1,2,..,nisa
. 7 Jth place
complete orthonormal system in R".

Theorem 5.4.4. In a Hilbert space H let {e,, e,,....e,...} be an orthonormal
sequence in H. Then following statements are equivalent (one implies other).

(a) {e;} is complete.

(b) <x,e; >=0 for all / implies x=0 in H.

[e¢]
(c) x:2<x,ei>e,- for each xe H.
i=1

(d) Z|< x,e; >P=|| x| for every xe H.
i=1
Proof : (a) = (b); Let (a) be true. Suppose (b) is false. Then we find a non-zero

x in H such that <x,e; >=0 fori=12,...

Put e:ﬁ. So that || e || =1, and <e,e; >=0 for all ;,
X
Therefore {e,e,,...,..e,,...}\w{e} becomes an orthonormal system containing

given system properly—a contradiction that {e,, e,,....e,} 1s complete. Hence (b) 1s
established.

(b)) = (c) Let S, =D <x,e>¢;
p
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n—>0

[e¢]
Then Z<x,ei>el.:hm S, =3 (say)
i=1
If 1<j<n, <x,e; >—<Sn,ej >
n
:<x,ej>—<2<x,el.>ei,ej>
i=1
=<x,e;>—<x,e;,>=0
Thus <S,,e;, >=<x,e; >
n
Now <x—Zl:<x,el. >e,e;>=<x-8,e;>=<x,e;>-<S,e;>
i=

:<x,ej>—<yllgrgoSn,ej>:<x,ej>—£1_r>130<Sn,ej>:<x,ej>—<x,ej>:0

[ee)
That means €; L| x—Y <Xx,e; >¢; |; therefore from (b) we have
i=1
n <]
x—Z<x,el->el-:Q Le. x:2<x,el->el-.
i=1 i=1

@ @
(c) = (d) . We have ||x||2:<x,x>:<ZI:<x,e,- >e,-.zi<x,ej >e; >
i= j=

n n
=< lim Z<x,el- >¢;, < lim Z<x,ej >e; >
H—>0 1 n—)oo]_:1

n n
= lim <Z<x,e,- >e,-,2<x,ej >e; >
=1 ;

H—>0 ]:1

n n
= lim Z< x,e; ><x,e >=lim Z|< x,e; >
H—w = H—w =

)
:Z|< xnei >|2 .
i=1
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(d) = (a). Let (d) hold and if possible let {e;} be not complete. Then we find
an orthonormal system strictly larger than {e,, e,,....,e,,.....}; say larger system looks
as {e, e}, e,,....e,....} where, of course, || e || =1 and <e, e>=0fori=1, 2,
(d) applies (taking x = ¢), and we have

[e¢]
e = Z|< e,¢; >” =0— a contradiction. So we have proved (a).
i=1

Example 5.4.2. Let {x,} be a sequence in Hilbert space /7 and x € H such that

lim || x,||=] x|, and lim <Xx,,x >||=<x,x>. Show that lim x, =x.
H—>0 H—>0 n—>0
Solution : Given lim ||x, ||=| x| and lim <x,,x>=<xx>=|x|*.
H—>0 H—>0

Now |[|x,—x|*=<x,—x,x,—x>=|x, | —<x,,x>—<x,x,>+]| x|
2 - 2
=[x, |I” —<x,,x>—<x,,x>+| x|

2 2 2 2
= x]|" =[[x[" =l x[" + || x||"=0 as n—>c0.

Therefore lim x, =x
n—>0

Example 5.4.3. In a real Hilbert space A if || x| = ||y |, show that <x +y,
x —y> = 0. Interpret the result Geometrically if H = Euclidean 2-space R>.
Solution : Let H be a real Hilbert space and x, y € H that such || x || = || y||.

Now <X+P,X—Y>=<XX>—<X,Y>+<P,X>—<),y>

=|| x| —<x,y>+<x,y>—| y|* (because it is a real

Hilbert space, <x,y>=<x,y>)
=0
That means (x+y) L (x—y).

It Euclidean 2-space k2, fig is an equilateral parallelogram i.e. a Rhombus with
adjacent sides represented by x and y with || x || = || y||; and we know that in a
Rhombus Diagonals cut at right angles.

EXERCISE A

Short answer type questions
1. Ifin an LP. space <x, u> = <x, v> for all x in the space, show that # = .
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Show that Banach space c[a,b] with sup norm is not a Hilbert space with an L.P.
to induce the sup norm.

If fis a bounded linear functional over Euclidean 3-space R3, show that  can be
represented by a dot product

J)=xz=E§p+E0,+E305.

Show that in a Hilbert space H convergence of Y, || X; || implies convergence of

@ J=1
2%
7=l
If ¢ denotes the Unitary space of all complex numbers. If z|, z, € ¢, show that
<z,z, >=2z,z, defines an L.P. function on ¢.

EXERCISE B

If x and y are two non-zero elements in a Hilbert space H, show that
llx+y||<||x]||+]|ly| where equality holds if and only if y = arx for a suitable
scalar «.

Let ¢ be a convex set in a Hilbert space H, and d = Inf{|| x||:xec}. If {x,} isa
sequence in ¢ such that 7111_{130 | x, ||=d, show that {x,} is a Cauchy sequence.

If {e,} 1s any orthonormal sequence in a Hilbert space / and x, y € H, show
that

@
1> <x.e,><y.e, > <[ x|y
n=l1

Let {e,, e,,...,¢,,} be an orthonormal set in a Hilbert space H where n 1s fixed. If

n

x € H be a fixed member, show that for scalars «;, o,...,c, | x_Zl:aiei | is
i=

minimum when «; =<x,e; >,i=1,..,n.
Let {e,} be an orthonormal sequence in a Hilbert space /7. For xe H, define

Y=Y <x,e>¢ :showthat (x—y) Le, (k=12,.).
k=1

Show that for the sequence space /, (a real Hilbert space) its conjugate space /,*
is isomorphic to /,.
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