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1.0 Introduction

I this chapter, we consider the two-dimensional irrotitional steady flow of an ideal
incompressible fuid. For plane flow, all dvnamic computations for the hydrodynamic
considerations, we take o layer of unit height cut by two planes parallel to the plane of the
flow, In considering the plane problem, we direct our attention on the Kinetic flow around
i hody fixed in a flow or for the motion of a body in a fuid at rest. We shali restrict our
discussions on cylindrical bodies having circular and elliptic cross-sections.

1.1 Irrotational Motion in Two Dimensions. The Stream
Function

If the motion of a liquid remains the same in all planes parallel to that of 1y and there
is no velocity parallel to the z-axis, i.e. if the velocily components u, v are functions of x.
y only and the component w = {0, then the motion is sad o be two-dimensional and 0 such
a case, we consider the circumstances in the xy-plane. When we speak of the flow across
a curve in this plane. we mean the flow is across a unit length of a cylinder whose trace
on the xy plane is the curve in question, the generators of the evlinder being paralle! to the
axis of z. Here the differemtial equation of the hines of flow is

vilx —udy =0 il
while the equation of continuiy 15
= = -
UL 0 ie M S vy (2)
0xoooy cnooy

This equation shows that the lef hand side of {1} is an exact differential dye, say, Thus

oy iy
vy — udy = dy = —dx+—dy
X £y

8



leading to u:-ﬂ'v:—ei {31.1
oy Ox
This function yix, v} is called the stream function or current function. It follows that the
lines of flow are given by w = constant.
Now if the motion of the liquid be immotational. then there exists a velocity potential ¢i{x,

v such that

o 2
== V== (4
% ey
From (3) and (4) we get
op oy b o
Ao = a e T (5)
ox  ay  dy X

50 that
cp G Gy
oxox oy dy
which shows that the families of curves & = constant, W = constant cut orthogorally at all
their points of intersection. These conditions are satisfied if we take & + iy to be a function
-of the complex variable x + iy.

Now let § + iy = f{x + iy). Then

N RN T T .
L_Fx-"la'-‘. =f"(x+iy), -r_};+ta:rl-=|f {x+|}r}=|E;—E£-
- 0 _oy G ow
aving ax oy dy  x

Thus ¢ and y are conjugate functions. If w = & + iw = f(z), then w is called the complex
potential.
Noting that
dw 00 Low % o (6)
de dx ox  dx  dy

we have the magnitude of the velocity at any point .;H' %w
dEol

2 a2 | 2 1
+[ﬂ} } =f'|_|2 4yl }-: =\'f!]ﬂﬂ'i[}". (]

]

{‘:- ]
|8
o e
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1.2 Boundary Conditions

From (51, it follows that

a2y ;527,4, Aty 8 0
+ = — + =
ax?  dy? adxdy  avix
. o L@ 0f . .
where it is assumed the validity of —— = ——. Thus the stream function v must satisfy
axdy  ayox

the Laplace's equation

Vig = 0 (8)

at all points of the liquid. This function y satisfies the following boundary conditions :

{a)

(b}

(c)

L . é cyr N
If the liquid is at rest at infinity, we must have A + and ooa infinity.
ax cy
At any fixed boundary, the normal velocity must be zero, or the boundary must

coincide with a stream line w = constant.

At the boundary of the moving cylinder. the normal component of the velocity of
the liquid must be equal to the normal component of the velocity of the cylinder.

We now express the condition () by a formula for w as follows,

Let a point O of the cross-section of any cylinder be taken as origin. Let U and V
be the velocities parallel to the axis of x and y at O and let the cylinder turn with the angular
velocity . If P(x, y) be any point on the surface of the cylinder, then the velocity
components of P are U — oy and V + @x. If 8 is the inclination of the tangent at P with
Ox, then from the differential calculus, we have

d
msB:%-E- and sinl_?l:d—i {99

Therefore, the outward normal velocity at P

Also the velocity of the liquid in the outward normal 1s — ™

= (U — wy) sinf — (V + ox) cost

dy dx .
=(U-—wy)——(V-ox)-—. 10
(U my)ds (V-ox)— (10}

g
s
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On equating above two expressions for the normal component of velocities in
accordance with condition (¢}, we have

dw dy dy
Uy )= —(Voox) SR
g OOy )TV ey

Integrating this equation along the arc, we get

\F:Vx—Ug.f+im[x3+y2 1+ C (1

“

where C 1s an arbitrary constant.

Let the cylinder move along the x-axis with velocity U without rotation (so that V =
0 and @ = 0). Then (11) reduces to

w = -y + C. (12
Similarly. if the cylinder moves along the y-axis with velocity V without rotation. then (11)
aives

w=Vx + C. (13)

1.3 Motion of a Circular Cylinder

Let a circular cylinder of radius a is moving in an infinite mass of liquid at rest at infinity,
with velocity U in the direction of x-axis. To find the velocity potential § that will satisfy
the given boundary conditions, we have the following conditions :

() ¢ satisfies the Laplace’s equation

Vi =0
at every point of the liquid. In polar co-ordinates (r, €) in two dimensions. V¢ = 0 takes
the form

R I 020
— e —
ori ror r?apl

which has solutions of the form

=1} (14}

" cos nth, " sin nf,

where n 1s any integer, positive or negative. Hence the sum of any number of terms of the
form

A r"cos nf), B "sin nf

is also a solution of { 14},

11



{£i) Normal velocity at any point of the cylinder = Velocity of the liquid at that point
in that direction. 1.e..

'
——=Ucosf whenr=a (15)
or

{1if) Since the Lguid 1s at rest at infinity, velocity must be zero there. Thos,

ar ror

The above considerations suggest that we must assume the following suitable form of ¢.
. B

&= ArcosfB+—cosf. (17
I

From {17}

a

|
), 2
]
|
T,
>
|
R -

-- )cmﬂ'. {]1%)

so that using (15), we get

- 7

09

UcosB = —( A - B ]cos:ﬁ. valid for all values of &.

Hence,

i
i =

U :t A-B j
Again the first condition of (16} gives A = 0. Thus B = Ua®.

Hence (17} reduces 1o
41:24;(:058. (19
r

[t may be noted that (19) also satisfies the second condition given by (16). Hence (19}
gives the required velocity potential. But
£ 5, 2
cr raf e
After integrating, we obtain

2

r
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which gives the stream function of the motion. The complex potential w is given by

Ta 2 T
w-_-L': {uuaﬂ—isinﬁ]:bi

21

where z = re'”.

1.4 Fixed Circular Cylinder in a Uniform Stream

Let a circular cylinder be fixed at the origin and x-axis be chosen in the opposite
direction of the stream U. Let R’ be the region r = a. Now the velocity potential ¢ satisfies
the relation

V2¢=0inR". (22
The boundary conditions are
¢ ~ Ux at infinity,
and
- % = 0 on the boundary of cylinder.
Let us take

&= Urcos 6+ ¢, (23)
where ¢, 1s the contribution due to pressure of the cylinder. '
The boundary conditions give
¢, — 0 at infinity (24}

and

a¢}l )
--MET-_—UCMBDHC:F——-& (25)

Now, since ¢ is harmonic, so ¢, is harmonic and its normal derivative is prescribed
on the boundary.

Now let us assume ¢, to be of the form

¢, =[Ar+-]§)cosﬂ_
. [
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To satisfy the condition (24), we have A = 0 and from (95), we get B = a°U.

Hence
2
¢ = UrcosB + Ua cost, N (26)
Again, we have
Ov __106
o rae’
which gives
Ta 2
W =Ur$.in(-fl—La -5inB . (27
T
Hence. the complex potential 15
Ua? |
W(Z}=UZ+—-';—* in R'. (28)
The equation of stream line is
W = constant
or,
2 '~|
( r— d— J sin 8 = constant
W |
or,
[ aly
Ly —— —TJ = constant. {24
I'q, x “ .+ }II =
Complex velocity is given by
dw a-
(S VN I
dz v ( 22 ] (30)
Then daw = () implies
Z = *a.

Therefore z = a are stagnation points (a point where the velocity is zero is called a
stagnation point. The stream lines are not well-defined thereat; a stream line may divide into
two branches at such a point).
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1.5 Circulation About a Circular Cylinder .

F
1f A and P be any two points in a liguid, then I{ udx + vdy + wdz ) is called the flow
A

along the path from A to P, where u, v, w are velocity components. If the velocity potential
i exisis, i.e. if the motion be irrotanonal, then

and so

ﬂuw:—}[a‘# 5¢_ ZT }

A

The flow round a closed curve C is known as circulation which is usually denoted
by . Thus

I =~ §( udx + vdy + wdz .
C
If the motion is irrotational and the velocity potential ¢ is single-valued, then circulation
round C is zero,
Let k be the constant circulation about the cylinder. Then the suitable form of ¢ in two
dimensions (r. 8) may be obtained by equating to k the circulation round a circle of radius
r. Thus, we have

If—f{g}{zmhk,

L o0
Integrating this we get
__ X6
) b= 2n
Again,
W _ X
ar 1’
which gives
k
_— - 1
v 2 ne



Thus the complex potential duc to the circulation about a circular cylinder is Biven by
W= —E{]n r+it)
in
o,

i .
w=_——Inz, (since z = re'.) {30

2_1(

1.6 Steaming and Circulation About a Fixed Circular Cylinder

We know that the complex potential wy due to the circulation of strength k about the
cylinder 1s given by
W = 2—-—]nz,
n
Also, the complex potential w, for streaming past a fixed circular cylinder of radius a, with
velocity U in the negative direction of x-axis is given by

Ua?
W3 =Uz+—1—.

Thus, the complex potential w due to the combined effects at any point  is given by

W= W 4 W

=L|’[1+"j_ J-,L,:k Inz. (32)
r LT
i.E.¢+i\p:U[fEiﬂ +ijie—i'i3 \+£|.TI{[1‘.'H,'I
r J 2=

Equating real and imaginary pans. we obtain
a= ki
dp=U r+—r—JcmF}—2—rE (33)

ard

T

W ZU{ r- %- ]'.-'-irl E}+§k—]nr.

Since the velocity will be tangential only at the boundary of the cylinder, so

[ o)

i\ pe J= 0 and hence the magnitude of the velocity q is given by
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| o | k
== =2 Usin® +—|.
| rod 2ma
If there is no circulation, i.e. if k = 0 there would be points of zero velocity on the
cylinder at 8 = 0 and 0 = =, the former being the point at which the incoming stream
divides. However, in the presence of circulation, the stagnation points are given by g =0,

e
sinf=-7 ::Ua
and such poinis exist when
|k|<4aUa. (34)

We now determine the pressure at points of the cylinder. The pressure is given by
Bernoullis equation

P_ g2
o Cit) 54 (35)

Let I1 be the pressure at infinity where the velocity 1s U and so

n_ boos
p—C{n 2Ll :
Then from (35) we obtain
P 1
c=—4+-(U2-q2)
pop 2
or,
p=1’[+--|--pLT3 —I-p'!IrZUr;inBr-!E--— Jz (36)
2 2P 2wat

If X, Y be the components of the thrust on the cylinder, we have

X = _-Iﬂl“ pcos Badd,

Y= -L:' " psinBadb.

Using (36) we get X = 0. Y = pkU, showing that the cylinder experiences an upward il
This effect may be attributed to circulation phenomenon.

17



1.7 Equation of Motion of a Circular Cylinder

Let a circulur cylinder is moving in a liguid at rest at infinity. To calculate the forces
acting on the cylinder owing to the pressure of the fluid, we suppose that U, V are the
components of the velocity of the cylinder when the center of the cross-section O is
(X ¥o)- Then we have

U=xgand V=y,.
Letzp=xg+iygand z — 25 = re' where r denotes the distance from the axis of the
cylinder.
On the surface of the cylinder r = a, we must have, the velocity of the liquid normal
to the cvlinder = normal velocity of the cylinder, i.e.

i
—T¢=Ucosﬁ+¥sinﬂmr=a- (37)

&ar
Since the liquid is at rest at infinity,

o
T =0 as . 38)
E}r A5 [ = 00 {
The conditions (37) and (38) suggest that ¢ is to be taken in the form

¢=[Ar+%]msﬁ+(ﬂr+%)sinﬂ. (39)
Therefore

ﬂ=(ﬁh—lju::u:m;l&'.lw('IC—E]sin.ll'ﬁl.

ar ri r
Using (37) and (38) we get

=L _aA.v=L_c,a=c=0

al a?
Thus we have B = a’U, D = a’V,
Hence from (39), the expression for ¢ is given by

¢=-a'ri(Umsﬁ+VsinB]_ (40)
Noting that
W __%
dr a0
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and using (40) and then integrating this equation, we obtain
al .
y=—(—-Usin®+Vcos0), (40
r
Hence the complex potential is given by

2 a—ib
W= d+iy =a—i’—{u+iv},

ie.
Cad (U+iVv
w= 2 V) (42)
L=Zp
Now
R ! 3 : 2
ﬁﬁ,_iﬂ_w-__E:M_}.ha_..{Ei?l__ (43)
a o o zZ—-2q (z-2q )2
Equating real parts, we obtain
r S . 1
%=%{Ucnsﬂ+vsinﬂi+t—z[{ﬂl—vl Jeos20+2UVsin28], (44)
The magnitude of the velocity q is given by
2 iv |7 at(u24+v2)
q1=d_W’ _l_g2 U#iV _af(Uuc+ }1 45)
dz (z-z4 )2 r4

Omitting the external forces, the pressure at any point is given by Bernoulli’s equation
as

p ap
—=C(t)4———mq?
5=C(+2-3q2,

which, on using (44) and (45) gives
2. p 2
P 2 C(1)+27 (Ucosd+Vsind )+ 2 [ (U2 —V2 )oos28+2 UVsin20] -+ 2-(U2 ~v2)
P r rt 2r4
(46)
Let p; be the pressure at a point (a, &) on the boundary of the cylinder. Then p, is
given by (46) on putting r = a as
pi =pC(t)+pa( UcosB+Vsin® }+p[ (U2 —V? }E‘CEEE+2UV5:in2EF]—%{ U2 +V2),
(47)
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Let X and Y be the components of force on the cylinder due to fuid thrusts. Then,
we have

e
X =—_[” ap, cos0do,

Y= "ap, sin0do.
which, with the help of (47), give

X=—pa? ‘[:E'U-CDSI 6do

=-malpl
=-M'U,
where M’ = ma’p = the mass of the liquid displaced by the cylinder of unit length,
Sirulary, _
Y=—ma2pV=-M'V.
Corollary : |
To show that the effect of the pressure of the liguid is 1o reduce the extraneous
SJorces in the ratio
{o—p):(o+ pi

where o, p are the densities of the cvlinder and liquid respectively, we proceed as
follows :

Let M be the mass of the cylinder per unit length and X', Y’ be the components of
the extraneous force on the cylinder if there were no liquid. Also let f, be the acceleration
of the extraneous force in x-direction. Then, due to presence of liquid. the resultant force
in x-direction is

=na‘of, —malpf,

ag—

(ma‘of, )



Qr,

htl T=p i

t‘w|+f\:i' o

i

MU = — -8 TPy
MaA-orTa-p O
Therefore
. i — I:I
MUs ——X '
FTp
Similarly,
- ﬁ —
MY = o Y
o+p
Hence the effect of the pressure of the ligquid is 1o reduce the external force in the ratio

{o—-pl: (o+p

1.8 Two Coaxia! Circular Cylinders

We now deternii.e the velocity potential and the stream function al any point of a
liguid contained between two coaxial circular cylinders of radii a and b(a < b). Let the
cylinders are moved suddenly parallel to themselves in directions at right angles with
velocities U and V respectively

Then if ¢ be the velocity potential and v the stream function at any point (r, @) i the
liguid. then the boundary conditions for the velecity potential ¢ ure

e—— = 1" ¢cos &, when r=a
or

and
cy :
— — =V 5in @, whenr=b. (48}
or
Now ¢ must satisfy the Laplace's equation

d ¢'+!L_¢1. 1 “ -0 (49)



at every point of the liguid.

‘Since (49) has solutions of the form r"cos n@, "sin nB, where n is any positive or
negative integer, the st of any number of terms of the form A | r® cosnB, B_r" sinnd
is also solution of (49). However. a suitable form of ¢ satisfying the given conditions is

L;‘:'r[.ﬂ.r+.-[ri)cmﬂ+((3r+%)sin8. (50)

Using the two boundary conditions (48) we obtain for any values @

A-Bovu,c-L2 -0, maa-B=0,c-B__v,
q e al al
These give
Ua? alh? Vb2 Valb?
As—r e B2 O 2 po- 0D
(b2 -a) (b?=a?) (b?-a?) (b2 -a?)
Thus -
_ Uaz [ b? ___Vb? E_",] .
i {bl—a3}[r+ - JEUSH b —-a'-'}[r+ . sin®. (51)
Since
% _ov
a0
we get by using (51)
__ Ua? b2 Y. Vb2 al
“-m-az'j(“‘F]s'"”+{b=_aﬁ(f"r)“‘““: (52)

1.9 The Milne-Thomson’s Circle Theorem

Statement : Let fiz) be the complex velocity potential for the two-dimensional
frrotational flow of an incompressible inviscid fluid having no rigid boundaries and
such that there are no singularities of flow within the circle 1z1 = a. Then, on
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introducing the solid circular cylinder 12| = a into the flow, the new ¢ aplex
velocity potential is given by w=1f{ z]+f{5. tlz) forlzl 2a

Proof : Since the singularities of f(z) occur in the region | z 1> a, so the singularities
of f(a’/z) lie in | z | < a. Hence the singularities of f{a?/z)alsolieinlzl<a Thus flz)

and f(z} + f (a? /z) both have the same singularities in the region | z | > 0 and, thercfore,
both functions, considered as complex velocity potentials, may be ascribed to the same
hydrodynamical distributions in the region | z | > a.

i3]

Now, on the circle |z | = a, we take z = 2e®, so that a’lz = ae™ and, therefore,

w=f(z)+f(a?/z)=f(aei®)+f(ae By =f(ae®)+f(ac®)

Thus, on the circle | z = a, w is the sum of a complex quantity and its complex conjugate
and is, therefore, w is a real number, i.e. y = Im(w)=0o0n |z | = a. Hence, the circular
boundary is a s:rear line across which no fluid flows. We, therefore, conclude that 1 2 | =
a is a possible boundary for the new flow for which w = f(z) + f(a’lz) is the appropriate
complex velocity potential.

Applications of circle theorem :

Example 1. Uniform flow post a stationary cylinder

We have already seen in Section-1.4 that a uniform stream having velocity <L along
the negative direction of x-axis gives rise to a complex potential Uz. Thus, if we take

f(z)= Uz, then f{allz)= UaZ Thusen introducing the circular section [z | = a into
z

the stream, the complex potential for the region | z | 2 a is given by

w=f{,z}+f{a3|z‘]:[}(z*£‘i_
z J

If z = re" and w = ¢ + iy, then

-

$= UEG&H[.I‘+“—'—}, W = T._lﬁinﬂ[r—i..l.,J
r r

which are the results obtained in Section-—1.4.

Example 2. Uniform stream at incidence with the positive x-axis
The complex potential for such a stream of veiocity U is Uze™, Thus, if we take f(z)
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. g 2 . . :
= Uze ™, then f(a— ): Ueib .2 Hence, when the cylinder of section |zl = ais
z z

Ly . . az .
introduced, the complex potential in | 212 a becomes w=U { ze ~ +[ - ) e if }

1.10 Theorem of Blasius

Staternent : Suppose that, in a steady two-dimensional irrotational motiom given
by the relation w = fiz), i.e. ¢+ iw = fla + iv), the hydradynamical pressures on the
contour of a fixed cylinder are (X, Y) and a couple N about the origin of coordinates.
Then

and

| dw 'y’
M=Re{--£p§ z[;—{-_—} e!:} (53)

where p is the density and the integrations are taken round any contour surrounding
the cvlinder.

Proofl : Let the normal to'the cylinder at the point P(x, y) make an angle O with the
positive direction of x-axis.

Then, for the action on the arc ds and P, we have
dX =— psin B ds, dY = p cos B ds
i.e. dX = - pdy, dY = pdx
50 that

and, therefore.
X-iY=—i§pldx—idy).
L
where the integrals are round the contour C' of the cylinder.
Since there is no external force and the fluid is moving irrotationally and steadily, so
the pressure equation is given by

24



1
=

= constant = A.

K-N -]
.

Thus

Wow the contour of the cylinder is a stream line, i.e. on O, y = constant. Also
dw=dw.
Therefore
P dw T
X=i1¥=—¢_ (——- ) dz..
2 }L' dz

Now in the plane outside the cylinder, it may be possible to have singularity in the

function ({;—W] if there 15 any physical singularity in the fluid (such as a source or a
z

vortex), Thus, if we take a larger countour C surrounding C' such that there are no
singularities between C and C'; or more generally, if such singularities exist, then the sum

of the residues nf( E:IE )h at all poles between C and C' is zero, then the integrals of this

function have the same value Tor all such contours and we have

o] [dwr‘_
N-iY =" S de,
' z"’fi iz ) &

Again
N= i:.,{ pxdx + pydy )
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= Real part of §C.P{X+i}f ) (dx—idy)

= Real part of }C,pzdi

= Real part of —%pi‘:,z( ]
= Real part of —%ph,z(?]dﬁ}
(%]

= Real part of -—-p§c,z

_ 1 dw }*
= Real part of _—zp c*z[ﬁ}?) dz],

Considering the same limitation as before regagding singularities in the liquid, the integral
may be taken round any contour C which surrounds the cylinder.

1.11 Transformations or Mapping

The set of equations
u=ulx, ¥ v=vix,y) (54)
defines, in general, a transformation or mapping which establishes a correspondence
between points in the uv- and xy-planes. The equations (54) are called transformation
equations. If to each point of the uv-plane there corresponds one and only one point of
the xy plane and conversely, we speak of a one-to-one transformation or mapping.

Conformal mapping

Suppose that under the transformation (54), the point (xg, vg) of the xy-plane is
mapped into the poirit (ug, Vo) of the uv-plane while curves C, and C, [intersecting at
(Xg, Yo)] are mapped respectively into curves C) and C%. Then, if the transformation is
such that the angle at (xq, ¥g) between C, and C; is equal to the angle at (uy, vg) between
C", and C", both in magnitude and sense, the transformation or mapping is said to be
conformal at (xy, yo). A mapping which preserves the magnitudes of angles but not
necessarily the sense is called isogonal.
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1.12 The Schwarz-Christoffel Transformations

Any simple closed polygon with n vertices in the z-plane (z = x + iy) can be
transformed into the real axis in the £ { = £ + in )-plane, the interior points of the polygon
corresponding to points on one side of the real axis 1 = 0, the transformation-cffective
relation being

) @3 g
& _AG-a)F T (Gmay) e (Gma,) (55)
dg
or, z=Af{r;-al;|'-T'" (quaz}Tz" {r;—a“)_n""' dZ +B (56}

where A and B are constants which may be complex, o, ty, ..., o, are the interior angles
of the polygon and a,, a;, ..., 4, are the points on the real axis nj = 0 that correspond to
the angular points of the polygon in the z-plane.
The following facts should be noted :
1.-  Any three points of a;, a, ..., a, can be chosen at will,
The constants A and B determine the size, orientation and position of the polygon.
It is convenient to choose one point, say a, at infinity in which case the last factor
of (54) and (55) involving a, is not present.
4. Infinite open polygons can be considered as limiting case of closed polygons.

1.13 Elliptic Coordinates

Let
z=ccosh §, where z = x + iy, L = £ + in.

Then x + iy = c cosh(§ + in) = e(cosh £ cos n + i sinh £ sin 1)

so that x = ¢ cosh £ cos n y = ¢ sinh & sin 1. {36)
Obvious X2 AR 57
- =
ly c?cosh? & c?sinh?§ 7
2 2
and LS. A (58)
cicosim c?sin?y
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Thus & = const. and 1) = const. represent confocal e]i:pwa and hyperbolas respectively,
the distance between the focii being 2c.

Let a, b be the semi-axes of the ellipse (37). Then for £ = a,
a=ccosh e, b=csinha,c =a®~b?

and a+h=¢:e“.a—l}=m'“,:1=l]ugi+g.

2
The parameters £, 1 are called elliptic coordinates.

1.14 The Joukowski Transformations

The transiomation

{59)

is one of the simplest and most important transformations of two-dimensional motion. By
means ol this transformation we can map the C-plane on the z-plane, and vice versa. From
(59). it can be shown that when | 21 is large, we have £ = z nearly, so that the distant parts
of the two-planes are unaltered. Thus a uniform stream at infinity in the z-plane will
correspond to & uniform streamn of the same strength and divection in the S-plane.

We now consider the inverse transformation of (539), viz. C = (zt VzT—c? ) or |

confining to positive sign only,

o1 i —
;_:-z-f_f.*r-df—uz} (60)

1 2

It can be readily shown that the region outside the ellipse K; +%- =1 is mapped into
H -

the region outside the circle |£; = -i—{a+ b).

Application. Streaming past a fixed elliptic eylinder
Let us consider the stream whose complex potential is USe™ in the £-plane. Then,

i a + b into the strcam, the new complex potential

I\-JI'—i

on inserting the circular cylinder £ !

is given by circle theorem as
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b
W =U£E‘i“+b{a4+.:_; e (61)

. . . . y | )
Now by Joukowski’s transformation (60}, the region outside the circle (§|= Sla+ b)is

1

1 -
mapped on the region outside the ellipse iﬁ— + —E—; = ]. Hence the complex potential w
a? 2

for the flow past a fixed elliptic cylinder can be obtained from (60) and (61} by eliminatng
£ as

1 — fa+b)? eif J
w==U|e-®(z+4/27 —c? 4 ————— —
2 [ [ ) z++/27 —¢?
Using the transformation z = ¢ cosh ( for elliptic coordinates, we have /2 —¢? =csinh(
and so z++/ 2% —=c? =ces Thus

{a+b)*

5
W= -I-U[e.‘iﬁ B E e — i
2 ce= ]
1 a+ . .
vy == —-b C-ifh -+ = il
2I.! ﬂmh[{a e +(a+b)e ]
Hence on the ellipse £ = a, whence a + b = ce” and a — b = ce™, we get
w=%U{u+h}{tC“'ﬂ‘“ +elip-a) ]
ie w = U{a+ b) cos h( = iff - a). (62)

This is the required complex potential for the sireaming past a fixed elliptic cylinder.
In particular, if the stream were parallel to the real axis, so that f§ = 0, then
w = Ufa + b} cos h{f — a). (63)

As a special case, we impart to the whole system a velocity U inclined at an angle
with the x-axis. Then the stream is reduced to rest and the cylinder moves with velocity
U, so that the complex potential is

Ufa+b)? Uia+h)?2 Ufa+b)? .
wWes——————e il = el = ——— g = C+if
4C 2({z+Jz2 —¢? ) 2c
= E_{_ﬂi:i'_b_} g = arifiea ) {64']
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This is the complex potential for the elliptic cylinder moving in an infinite liquid with velocity
U inclined at an angle [} with the x-axis. In particular, if the elliptic cylinder moves parallel
to the x-axis, so that § = 0, then '

w==U(a+b)e-5me, (65)

1
2

1.15 The Aerofoil

The aerofoil used in modem aeroplanes has a profile of “fish" type, indicated in figure.
Such an aerofoil has a blunt leading edge and a sharp trailing edge. The projection of the
profile on the double tangent, as shown in the diagram, is the chord. The ratio of the span
to the chord is the aspect ratio.

The camber line of a profile is the locus of the point midway between the points in
which an ordinate perpendicular to the chord meets the profile. See figure 2,15

The camber is the ratio of the maximum ordinate of the flow round such an aerofoil
on the following assumptions :

1. That the air behaves as an incompressible inviscid fluid.

2. That the aerofoil is a cylinder whose cross-section is a curve of the above type.

3. That the flow is two-dimensional irrotational cyclic motion.

The above assumptions are of course only approximations to the actual state of affairs,
but by making these simplifications it is possible to arrive at a general understanding of the
principles involved.

It has been found that profiles obtained by conformal transformation of circle by the
simple Joukowski transformation make good wing shapes, and that the lift can be
calculated from the known flow with respect to a circular cylinder.

1.16 The Theorem of Kutta and Joukowski

Statement : [f an aerofoil of any shape be placed in a uniform wind of speed V,
then the resultant thrust on the aerafoil is a lift of magnitude kpv per unit length and
is at right angles to the wind, where k is the circulation round the cylinder.
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Direction of flight
Figure 2.15

&Y

H ] -
| L

Figure 2.16

Proof. Since there is a uniform wind, the velocity at a great distance from the aerofoil
must tend to the wind velocity, and therefore if | z 115 sufficiently large, so that we may wnle

dw A B

==Vele 4 —4—4 ...
de z ot (66)
where @ is the angle of incidence or angle of attack.
Thus
w= Vzeh —A]nx-—E-r
.
and since there is circulation k, we must have
ik
A== (67)
an

for In z increases by 2ni when we go once round the acroforl in the positive sense.
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From (66) and (67) we get,
c R AT s 3 2 . it
[_q}l =Vielm +.1E,Em _k +1'T.:|t1 BVe . (68)
dz . nz dmig?

If we now integrate round a circle whose radius is sufficiently large for the expression
{68) to be valul, the theorem of Blasius gives

}(—i‘l'=(%ip)21ti[ikv:m )

= = ikpVe '
s0 that, changing the sign of i we obtain

[
X +iY = kpve 12",
Comparison with above figure shows that this force has all the properties stated in the
enunciation.

1.17 Motion of an Elliptic cylinder

(i) To determine the velocity potential and stream function when an elfiptic
cvlinder moves in an infinite Dguid with velociry U parallel 1o the axial plane through
the major of a cross-section.

For any cylinder moving with velocities U and V parallel to axes and rotating with an
angular velocity w, we know that on the cylinder

wz\-"x-U}rvh—é-m{xi +¥? ) 4 constant (A, say).

Here
V=0 ow=0
Hence the stream function is given by
y=-Uy+A. (69)
Let the cross-section be the ellipse

5
x? ¥-
—=1.

al +Ez
This is the same as £ = a, if a = ¢ cosh @, b = sinh @ and ¢” = a® - b7, where
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x = ¢ cosh & cos 1, (70)

y = ¢ sinh £ sin n. (71
Using (70) and (71}, (69) becomes
w = — Uc sinh a sin i + A. (723

Since w contains sin i and the liquid is at rest at infinity. w must be of the form
¢ sin 1. We therefore, assume that

b + iy = Be 5+ iW (73)
s0 that

y = — Be™ sin 7). (74)
Then at boundary £ = o, we must have for all values of 1,

A =0, B = Uce" sinh a.

w = — Uce® ™ sinh a sin 1 (75)

is a stream function which will make the boundary of the ellipse a stream line, when the
cylinder moves with velocity U.

But
L3
¢ sinh & = b and e = =[“+E]=. (76)
Using (75) and (76}, (7) can be written in the form
1
w=~Uh({:—E]"c"t sinn. (77)
Also from (75),
L}
¢=Ub(2ig]3 e~ 5 cosT). (78)



Hence we obtlain

e - (5+in), (79)

(i} To determine the velocity potential and the stream function when an elliptic
cylinder moves in an infinite liquid with velocity V parallel to the axial plane through
the minor axis of a cross-section.

Proceeding as in (i), we can obtain

!
¢:Va[ﬂ)2 e~ % cosm. (80)
a=b
1
up:Va(:Lb)z e~ % sinm, (81)
and
I
w:i\-’a(a+b)z e~ 15+im), (82)
a-b

(iii) To determine the complex potential when an elliptic cylinder moves in an
infinite liquid with a velocity v in a direction making an angle 3 with the major axis
of the cross section of the cylinder.

The components of v along coordinate axes are

U=vcosp
and
V=vsinp

Let w, and w, be the complex potentials corresponding to the motion of the cylinder

with velocities U and V respectively. Then from (79) and (82), we obtain

1

W, =Ub(:t:)* e - (E+in)

o |

(=2

+

|

= bvcasﬂ( a

) e-H’;+1"q},
a-—

=3

and

34



b |-

o

W oo =iva[u'+ ] g1 &+m]
- a-b

I
=iav5inﬁ{%]2 e (&) |

Hence the complex potential due to velocity v is given by
W= Wy o Wy

1
=cu(:f:)* e~ sinh{ o +ip),

where £ = £ + in, b = ¢ sinh &, a = ¢ cosh a. Thus
w = v(a + b)eS sinh(a + ip), since ¢* = a® - b’

1.18 Liquid Streaming Past a Fixed Elliptic Cylinder

To determine ¢ and w for a liquid streaming past a fixed elliptic cylinder with
velocity U parallel to major axis of the section.

Superimpose a velocity U on the cylinder and on liguid both in the sense opposite to
the velocity of the liquid. This brings the liquid at rest and the cylinder in motion with
velocity U. Hence, some suitable term must be added to each of the expressions for ¢ and
w obtained in (69) of Art. 1.17. When the stream flows from positive x-axis to negative
X-axis, we have

R M__u. (83)

ax oy
Accordingly, we must add a term Ux to ¢ and Uy to w as obtained in Art. L17. Thus,

wie have

1
111'=1.13r.+|._ﬂ::r{%]2 e % cost
a-—

. 1
i -
=U{a? =b2)2 cnshﬁ:nsn+Ub[H)' e~ % cosm, (B4)
and
1
1{;=U}r—l_]b[a+h]3 e~ 5 sinm
a=b
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B | o

=U{a?-l:!1}%5inh§sinq—l.]b(:—tg) e~ 4 sinn. (85)

ihien the complex potential is given by

w = Uz + Ube®"%, ' (86)
Another form for ¢, w and w, we can be obtained as
§ = Uce* cosnjcosh( § —a), (87)
y = Uce = sin nsinh{ E—a ), (B8)
anlh
w=U(a+b)cosh{~a). (89)

v fich is the result (631 obtained in Section—1.16.

1.19 Rotating Elliptic Cylinder

To determine @ and w when an elliptic cylinder is rotating with angular velociry
e i an infinite mass of the liguid at rest at infinity.

For any cylinder moving with velocity U and V parallel to axes and rotating with an
angular velocity @, we know that on the cylinder

1g.r=VJL—U}f+%-01{Iz+'.'|’1}+1:unsmnt,ﬁa}fh, {(90)
Let the cross-section be the ellipse
x2 y? i
a2l p2

This is the same as = @, if a = c cosh e, b = ¢ sinh & and ¢* = a* - b%. The elliptic
coordinates (&, n) are given by

x=ccoshEcosn,
y =csinh&sinm. _ (91)
Here
U=V=0
So using (91), (90) reduces to
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ur:lmﬂ icosh2E+cos2n)+A. (92}

Since, y contains cos 21 and the hquid is at rest at infinity, yw must be taken in the
fonn

yw=DBe-2% cosln (3
and hence

¢=DBe 25 sinh2n. (%)
Then at the boundary £ = a, we obtain for all values of 1

B=-ji-{1:c1ﬂ3"

A=—jimc1 cosh2a,

Thus ¢ and w reduce to

¢=i—m{a+h]1¢-=15in2n, (95
ql'=f1—rm{a+h]? e2%cosldn. LM

Henee the compley potential function is
m=.}iﬂ-‘l(ﬂ+h}3€'”-sinceﬁ=ﬁ+in. (97)

1.20 Motion of a Liquid in Rotating Elliptic Cylinders

Let the elliptic cylinder containing liguid rotate with angular '.T.I;m:it}r @. The strems
function w must satisfy the Laplace's equation

Vig=0
and on the boundary it satisfies the condition
wr-%m[ﬂvyl T+ AL {08
We assume that
yw = B(x" - y9). {90}
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On the boundary of the cylinder, we must have

We also know that the boundary of the cylinder is

x? ¥°
=1.
al +h?
Comparing (100} with (101} we get
1 _a?-b2
E"z a?+b?
s0 that
_1.,a*-b 2 _y2
2747 +b? ‘ v
Then from (99)
B a2 —h2
P TTE h

The magnitude of the velocity § is given by

oo 2) )

= (i} [al ~-b? )[12 +}r1 ]J

al +b?

K.E. of the ligquid contained in rotating cylinder is given by

Tz-%p”-qzdxd}r

_.1 {al_bE}E
STt T

(100)

(101}

{102}

(103)

(104)

(105)

1.21 Flow Past a Plate

If b = 0, our ellipse degenerates into the line joining the foci, namely o = 0, and
therefor a = ¢. Hence for the flow past a plate inclined at angle 8 to the stream, we have
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= Uncosh{{=i0)
The stagnation points still lie on the hyperbolic branches.
n=08,n=n+0.
The speed becomes infinite at the edges of the plate, so that the solution cannol represent
the complete motion past on an actual plate.

Im terms of #, we have

w=U{zcosB—iJz2 —a° sinh).

When the plate is perpendicular to the stream, then § = : . s that

©=-iUJz¥at.

1.22 MHlustrative Solved Examples

Example 1 :

In the case of two dimensional motion of a liguid streaming past a fixed circular disc,
the velocity at infinity is U in a fixed direction, where U is a variable. Show ik the
maximum value of the velocity at any point of the fluid is 2U. Prove that the force necessary

to hold the dise is 2mU . where m is the liquid displaced by disc.
Solution :
The velocity potential for the liquid streaming past a fixed circular disc 15 given by

2
¢=U(r+a—r—Jcnsﬂ. {n
where a is the radius of the disc. This gives

ﬂ= [I—“E-]cmﬂ and i"1—l=—[r+[lz ]sinﬂ
r b

5

or - r
Therefore
z 4 a 3
% I‘:i* ,ﬂ_-z - -‘12 =
dmf = | 4| w—— =U3[!----—] gl 'F:+L|3(I+--—- sin * O
8 [ ar T &o 7t r? ] .
Ayl 4
-u? [I -2 cos20+22 . 2
r r
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which is maximum with respect to 8 when cos 28 = - | i.e. 20 = 7 and then

2 4 1
q-’=U3[E+Mﬂ +34J urq=U[t+y'r]
T T -

Now g is further maximum with respect to r when r is minimum, i.e.. whenr = a.
Hence the required maximum value of g is given by

g = 2U.
By Bemoulli’s equation, the pressure p is given by
P_ob |
—=— = Fit
g a ‘-] +F(t). {3)
Using (1) and (2), (3) reduces to

PoF)-ivU [I—z—a—-c 19+----]+U[ +f’53—]¢m—a_
P 2 r

Putting r = a, the pressure on the boundary of the disc is given by

P F(t)-2U2sin2 8+0.2acos6.
P

Then the resultant pressure on the disc
= [2"(~ pos6)ad = - pa [2"[Ft)-20% sin? 8+2Vacos8]d8, by @)
=-2pa? [:lj:!cns? Bde=-2malplU=—-2mlU since m = ma’p

Hence the desired force necessary to hold the disc is 2m 1.

Example 2 :

A circular cylinder is placed in uniform stream, find the force acting on the cylinder.
Solution :

We know that the complex pﬂtr:ntml for the undisturbed motion in a uniform stream

with velocity components U, V is given by w = (U + iV)z. Using Milne-Thomson’s circle
theorem, the complex potential for the present problem is

w = (U=iViz + (U +iV) (a*/z)
Therefore

% =U =iV = (U +iV) (afz?)
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If the pressure thrusts on the contour of the fixed circular cylinder be represented by
a force (X, Y) and a couple of moment N about the origin of co-ordinates, then by Blasius’

theorem, we have

1. rfde) . 1. . . 2.
X—lT:E;pIC(E;) dzurz—1p‘f{{U—J‘ui']—{U+:‘+"}{a1 fz2)} dz=0

s0 that
X=0 and Y =0-
anxd

1 da }*
N = Real part of _EPL: z[—-—uj dz

dz

1 . W .at]?
=rea]panuf—ipjc z{U—N—{U—N}z—I} dz

= real pannf—%p{—l{ui +V#)a?}2qi=0

Therefore X = Y = N = 0, showing that neither a force nor a couple acts on the

cylinder.
Example 3 :

A circular cylinder is fixed across a stream of velocity U with a circulation k round the
cylinder. Show that the maximum velocity in the liquid is 2U + (k/2mu), where a is the

radius of the cylinder.
Solution :
The velocity potential ¢ for the motion is

_ a? -k
¢—U(r+ - Jmsﬁ P

~where r is measured from the centre of the cross-section of the cylinder.

Then the velocity q is given by
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Joa (i o s
=2 ]-— +=— |+—| 1+— |sinO + ———,
v [ ré cos20 nr iz ) dxir? -
which is maximum with respect to r when r is minimum, i.e. whenr = a.

Thus

' 2Uk . k?
gt =U? {2-2-:m9]+E-—smﬂ+4“2aI

2
=4U2gin? E\!+—-—2 l-']a-EsinEH—]“:
fa 4ria?

k 2
=[zu5ma+i—ﬂ;) (2)

Now q is further maximum with respect to 8 when sin 8 = | i.e. ® = n/2. Thus, from
(2) the desired maximum velocity is given by
kK Y . k
= 2U+— £ q= —
q ( U+2ﬂ] ie. q 2U+Er|:a'
Example 4 :
An infinite elliptic cylinder with semi axes a, b is rotating round its axes with angular
velocity  in an infinite liquid of density p which is at rest at infinity. Show that if the fluid

is under the action of no force, the moment of the fluid pressure on the cylinder round the
center is

1 4 do =a’ +b*
Enpc m where ¢ =a’+
Solution
Using Bernoulli’s equation, pressure p at any point is given by
P 1 ¢
— =C-._- 2
q 54 at (1)

Now for an elliptic cylinder rotating with an angular velocity @ in an infinite fluid,
velocity potential § and complex potential @ are given by

p=T0(atb)? et sin2n 2)
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1

w=1im{a+b}ze4§y (3)
where
z=x+1y=ccosh{ and L=E+in. (4)
Therefore
2
do}? |de 48] _l1. . 1
2 = — = —— = | = bi2 e—2% (=2
d dz df dz |41m|:a+ 2 e }csinhﬁ
@? (a+b)* | g-2ee-tm |
© 4c¢?  |sinh(E+in)!
_mz_f_g+h]4e*‘ﬁx I
- 4c? sinh 2 £ +sin2 n ®)
and
dp 1 4 ntE o do
—_— =2E —_—
a 4{a+bj € :f.anr]dt (6)

Using (1), {5) and (6), the pressure at any point on the boundary of the ellipse
E = a is given by
P w? {a+b)? g-du

| . da
LA Ll h)2 e-2a gin? N
p ¢ 8c? (sinh? |1+s'inr|]|+4{a+ )ie simen dt (7.

Now the pressure on an elementary are ds of elliptic boundary at a point P (of
eccentric angle 1) is pds. Let © be the angle between tangent and radius vector.

Then from calculus, we have
cosf=— 8
s (8)
Now the moment of the fluid pressure on the element ds about the center

= — prds cos @ = — prds, by (8)

=p.%[a*’-' +b2 )sin2 ndn [since, n:l:*=—%l:a1 +b? )sin2 ndn]
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Therefore, the required total moment of the liquid pressure on the clliptic ¢y linder
about the centre is

—E!—l-lh——f psin2 ndn
al—h2 [ix m? {a+h)* pg-du (a+b)? do | .
= e e . da = T ——— -
2 I':' [E 8¢? sinh* o +sin? n FE :_“nznrh 2 ndn
2 _h? srazia+h)? . '
=E—'ih_’l"-' a 1£ l+4 ) e-24 sin? Eﬂ{:i—? dn (other integrals vanish)
(a? =b2)a+b)? e=" ey an .
c* {u+bj-a b dop2al—cosdn |: . s +h7
— - since, ¢ =a? —h2 =
R oy j 5 dn since, ¢* =a hJ
_ef{a?=b?) do_ 1__ ,dw
- 8 Par "8 ™ Tar
Example 5 :
In the two-dimensional irrotational motion of a liquid streaming past a fixed elliptic disc
. : z ' =1, the velocity at infinity being parallel to the major axis and equal to U, prove
that if

x+iy=ccosh(E+in), a’—b*=¢? and a=ccosha, b=csinha,
the velocity at any point is given by

2 U2 a+b.$inh1 (E-a)+sin? n

b a-b sinh? £ +sin? n
. . l’.ﬂ +b}
and that it has maximum value - -— at the end of the minor axis.
a

Solution :
The velocity potential for the case “Liquid streaming past a fixed elliptic cylinder” is
given by
- w = Ula + b) cosh (£ - a) : i
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Mow,

_tdw||aw 9G]

T=1d |7 ag dz |
Now,
=U{H+h] binh!:':"—“j [using (1) and z = ¢ cosh ]
c sinh{
But
isinb({—a) =lsinh(E—a+in)|, asC=E&+in
= sinh{ & - o Jeosnj+icosh( € —a )sinm)
= Hﬂhl (E~a)cos? n+cosh? (E—a)sin?
= Jsinh? (E—~a)+sin? n
Similarly,
'sinh&|= /sinh? E+sinn
Since,
inh? (E— in2 n 1"
e
50 that

5 im 2
R g ] 3"‘"] sinh * {g'_'."‘_:'_"f.s_m n
q v (a-h [

sinh 2 E+sin?
(3) gives the required value of velocity.

To determine the maximum value of q, we rewrite (3) as follows :

q? =Ui[a+h)[]_.5i“hz E+sin? (ﬁ—u]:l

a=-b sinh? E+sin? n
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But sinh £ > sinh( £ — & ). Hence for a given &, (4) shows that g will be maximum

when sin 1 is maximum i.e. N = g Then (3) gives

a+h)l+sinh*fﬁ—u} [a+b)mh?{&-u_:l

———— 2 -
a-b v cosh § ®)

T _qJ2
d ( I+sinh? a-b

U2 [ a+b )[ cosh £ cosh o —sinh £ sina ]z

a-b coshg
=12 [E){mnhu—mnhl‘,sinm]i,- (6)

showing that q will be maximum when tanh £ is minimum i.e. £ is minimum. Since we
have an elliptic cylinder surrounded by liquid, the minimum value of £ is «e. Hence putting
£ = a in (3), the required maximum value of g is given by

b 1 a+h e? —
z=Uz[a"' ] =Uz[_..,_)._._. as a = c cosh a
(9 ma ) a—b Jcosh? o a-b.J a?

3 _ R
=U2(a+hj-“ —b as ¢ = a* — b?
a=-b al

Ufa+b)
W LTCUY

Example 6 :

A source is placed midway between two planes whose distance from one another is
2a. Find the equation of the streamlines when the motion is in two dimensions and show
that those particles which at an infinite distance a/2 from one of the boundaries, issued from
the source in a direction making an angle m/4 with it.

Solution :

The transformation £ = ie™* transforms the strip of breadth 2a in the strip of breadth
2a in the z-plane into the upper half of the plane {-pane, the origin O in the z-pane being
midway between the two walls. The points B, C coincide with (B, C,), { = 0.

When z =0, £ =i, i.e., the point P in the C-plane.
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Thus in the z-pane there 1s a source m at O’ and equal sink at infinite distance, so in
the C-pane there will be a source m at P and a sink (—m) at (B, C) and hence an image
souuce m at the point { = i.

Therefore,
w=-mlog(C—-i)-mlog(C+i)+mlogl
£2 +1

=~-mlog =-—mlog({+L')

= _5E { m nz
=-—m]ﬂﬂ{in!a =je 2a ]:—mlngi[czt —& 2a ]

&L b

-mlﬂg(:ﬁ —-e 2a }—mlﬂgi

Omitting the constant, we take

= m
W=—-mlug[ein - 2a ]

or |

w = —m log(e™ - &), | (1)
where

¢ = nf2a ' (),
50 that
w = —m log (e * ¥ _ gelx + i),
Therefore
¢ +iy =—mlog[ 2coscysinhcx + 2 isincy coshex ]
and s0
W= — mtan ! Esii"fiim___hm':=-|-|-|_[,a|1—l ( tancy ].
2coscysinhcx tanh cx

Streamlines are given by w = constant, i.e., tan cy = K tanh cx,

. Ty X :
. —~ K KL )
i.e 74 tanh 24 [using (2)]
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When x = =, y = a/2. Hence K = |. Therefore streamlines become

Y nx
tan— = Ktanh —-.
anzﬂ an P (3)

Diff. {3} w.ri. x we have

Example 7 :

Use the transformation & = e™ to find the streamlines of the motion in two dimensions. -
due to a source midway between two infinite parallel boundaries (assume the liguid drawn
off equally by sinks at the ends of the region). If the pressure tends to zero at the ends
of the streams, prove that planes are pressed apart with a force which varies inversely as
their distance from each other.

Solution :
We know that the transformation
Q = cl.l'.ﬂ [I}

transform the infinite strip A., B., C.. D in the z-plane with origin at O into the
upper half in the {-plane with origin at (B, C) which coincide with B, C, at { =0.
The point z = aif2 goes to { = e™ = i at the point P in {-plane. There is a source at
0" in the z-plane and equal sink at infinity, therefore in the C-plane there is a source of
strength m at P, sink of strength (—m) at (B, C) and an image source at £ = —1i.

The complex potential is given by
w=-mlog({-i)-mlog({+i)+mlogl=-mlog(L+L"")
=-mlog(e=® +e-=2) . using (1)
=-mlogZ-mlogcosh(nz/a).
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Therelore

w=—mlogcosh{ mz /a), omilting the constant term in .

From (2},
dw mn nz mft
= — = ~—=taph ==, -
q dz . - and g . .
We know that
E-F-—ii]1 ==:4::+nstant==l—¢:_|z [p.=0]
p 2 2 o] a
2m? 2y 2
p 2a?l a al cosh?

Now, any point on the upper boundary is z = x + ia and hence (3) gives

2a1 Y E '
4 mhl(ﬂﬂnj 2a t:oshlﬂf
a

Pa
P

If F be the force with which the planes are pressed apart, then we have

=

& nipm? .. wipm? = m?
F=2!updx= pz j“ : dx = P__" -i[mnhﬁ} =:r.p‘

a cosh 2 X a n a lo a

ad

showing that F o 1 {e. the force varies inversely as the distance between the planes
a

apart.

1.23 Model Questions

Short Questions :
1. Show that the curves of equivelocity potential and stream lines intersect orthogonally.

2.  Define stream function (or current function).
3.  Sute the boundary conditions for the motion of a cylinder in a uniform stream.
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6.

7.
8.
gi

Define flow and circulation for fluid motion.

Find the expression for the complex velocity potential in the case of motion of a
fluid with circulation about a circular cylinder.

State Milne-Thomson Circle theorem, Blasius theorem and Kutta-Joukowski
theorem.

What is meant by conformal mapping? When is it said to be isogonal?
Define Schwarz-Christoffel and Joukowski transformations.

What is meant by aerofoil? Define camber stating the assumptions required.

10. Define elliptic coordinates.

Broad Questions

]'

P

Discuss the motion of a circular (or/elliptic) cylinder moving in or infinite mass of
the liquid at rest at infinity with velocity U in the direction of x-axis.

Discuss the motion of a liquid past a fixed circular (or elliptic) cylinder.

Show that if there is a streaming past a fixed circular (or elliptic) cylinder with
velocity U in the negative direction of x-axis and there is a circulation of swength
k. then the cylinder experiences an upward lift amounting pkU, p being the
density of the liquid.

Deduce the equation of motion of a circular cylinder moving in a liquid at rest at
infinity. Hence show that the effect of the presence of the liquid is to reduce the
extraneous force in the ratio (o — p) : (o — p) where o, p are the densities of
the cylinder and liquid respectively,

Determine the velocity potential and the stream function at any point of a liquid
contained between two coaxial circular cylinders.

State and prove Milne-Thomson circle theorem. Apply the theorem to find the
complex potential of (1) a uniform flow with velocity U along negative x-axis past
a fixed circular cylinder and (ii} a uniform stream at incidence P with positive x-
axis.
State and prove Blasius theorem and the theorem of Kutta-Joukowski.
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Determine the complex potential when an elliptic cylinder moves in an infinite
liguid with a velocity v in a direction making an angle B with the major axis of
the cross-section of the cylinder.

Find the complex potential when an elliptic cylinder is rotating with constant
angular velocity in an infinite mass ol liquid at rest at infinity.

Problems :

Show that when a cylinder moves uniformly in a given straight line in an infinite
liquid, the path of any point in the fluid is given by the equations

dz _ Va?  dz'_ Va?

de (z'-veyr'dt o (z-Vi)r'

where v = velocity of cylinder, a its radius, and z, 2" are x + iy, x — iy and x. ¥
are the coordinates measured from the starting point of the axis. along and’
perpendicular to its direction of motion.

If a long circular cylinder of radius a moves in a straight line at right angles
to its length in liquid at rest at infinity, show that when a particle of liquid in
the plane of symmetry, initially at distance b in advance of the axis of the
cylinder has moved through a distance c, then the cylinder has moved through
a distance

A circular eylinder of radius a and infinite length lies on a plane in an infinite depth
of liquid. The velocity of liguid at a great distance from the cylinder 15 U
perpendicular to the generators, and the motion is irmotational and two-dimensional.
WVerify that the stream function is the imaginary part of w = wal coth {ma/z),
where z is a complex variable, zero on the line of contact and real on the plane.
Prove that the pressure at the two ends of the diameter of the cylinder normal to
the plane differs by

(1732)m*pU2,
The space between two infinitely long cylinders of radii a and bia > b)

respectively is filled with homogenous liquid of density p and is suddenly
moved with velocity U perpendicular to the axis, the outer one is being kept
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fixed. Show that the resultant impulsive pressure on a length ! of the inner
cylinder is '

b2 +a?
2
Tpa b 3

= U

Prove that if 2a, 2b are axes of the cross-section of an elliptic cylinder placed
across a stream in which the velocity at infinity is U parallel to the major axis
of the cross-section, the velocity at a point (a cos 1, b sin 1) on the surface
5

Uf{a+b)sinn

(bt cos? n+a?sin? n)"”

and that, in consequence of the motion, the resultant thrust per unit length on that
half of the cylinder on which the stream impinges is diminished by

Eh*pU=[17(3+b)Wium,,A[a-b)”2}

a-b a-b a+h

where p is the density of the liquid.

An elliptic cylinder, the semi-axes of whose mﬁctinns are a and b, is moving
with velocity U paralle] to the major axis of the cross-section, through an infinite
liquid of density p which is at rest at infinity, the pressure there being I1. Prove
that in order that the pressure may everywhere be positive

2a’ll

pUT « e,
2ab+b?2

An elliptic cylinder, semi-axes a and b, is held with its length perpendicular to, and
its major axis making an angle © with the direction of a stream of velocity V.
Prove that the magnitude of the couple per unit length on the cylinder due to the
fluid pressure is

[lp(al -b2 )V:sinbecosh

and determine its sense.
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8. A rectangle open at infinity in the x-direction has solid boundaries along x = ().
v =0and y = a Fluid of amount 2xm flows into and out of the rectangle at the
corners X =0, y =0 and x =0, y = a respectively. Prove that the motion of the
fluid is given by

w =4 log tanh (nz/2a).

9. Show that the transformation z=(a/m){(§F 1) -sec~1 {}, f=e ™V

where 2 = x + iy, 0 = ¢ + iy, give the flow of a straight river of breadth a, running

with velocity V at right angles to the straight shore of an otherwise unlimited sea
of water into which it flows.

1.24 Summary

In this chapter, two-dimensional irrotational motion of an inviscid liquid past circular
an elliptic cylinder has been considered. In addition, motion of these cylinders in the liquid
has also been taken into account. Due to wide applications, Milne-Thomson circle theorem
and Blasius theorem are discussed. Also a sketch of aerofoil is given.
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Structure
2.0  Introdoction
2.1 Motion of a sphere

2.3

2.5

2.6
2.7
2.8

2.1.1  Irrotational motion of liquid in which the sphere is moving

2.1.2 Equation of motion of a sphere

2.1.3 Fixed sphere in a uniform stream

2.1.4 Moving concentric spheres

Axi-symmetric motion

2.2.1 Stokes’ stream function

2.2.2 [Irrotational axi-symmetric motion

2.2.3 5Solids of revolution moving along their axes in an infinite mass of
ligyuiid

Ellipsoidal coordinate system

2.3.1 Translatory motion of an ellipsoid

Source, Sink, Doublet

Images

2.5.1 Image of a source with respect to a rigid plane

2.5.2 Image of a source in front of a sphere

2,53 Image of a doublet in front of sphere

[llustrative Solved Examples

Model Questions

Summary
54



2.0 Introduction

We now describe irrotational motion in three dimensions with particular reference to the
motion of a sphere, ellipsoid and solids of revolution in an infinite inviscid incompressible uid.
The stream function and velocity potential are obtained. It is to be noted that the powerful
tool of the theory of complex functions cannot used in three dimensional problems.

2.1 Motion of a Sphere

We propose to study irrotational motion in three-dimensions with reference 1o the
motion of a sphere. We shall consider spherical form of solution of the Laplace’s equation

di¢p o o&°
¢+ d"+ '1}'—-'[]

dx? dy? oz* N
which, in spherical polar co-ordinates (r. 8, w), reduces to
a: a2 a2
i lﬂ_‘_ 1 __E+=:ntﬁ_af+__'_1_‘___¢’_=ﬂl @

Zri rar r2o02  r? 00 risin?0dw?
When there is symmetry about z-axis, ¢ is independent of @ and hence (2) reduces to
979 206 1 97% cotB 0

#mme—
dri rogr r? ooh? r o

Substituting ¢ = f{r) cos B in (3), we see that
(48,20

f(r)  cosf _
e +;-c-]? ]-CDF-'EI-— r':"‘:mﬂ"',z fir)=0,

0. (3)

so that f(r) satisfies
' d2f . df
ri——+2r—=-2f(r)=0
dr? dr (r)
which is a honiogenous ordinary differential equation and the solution of the equation is of
the form ftr,‘l=ﬁr+—B.; .
r -
Hence the solution of the equation (3) can be taken as

¢=f{r}cmﬂ=(hr+£—-)cmﬂ. 4)
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2.1.1 Irrotational motion of liquid in which the sphere is moving :

Let a solid sphere of radius a is moving with velocity U through a homogenoeus liquid
which is at rest at infinity. Let O, the center of the sphere, be taken as the origin, We
choose Oz in the direction of velocity U so that the motion is symmetrical about Oz.
Let P(r, B, @) be any poim, and R' denote the region r 2 a while R is the region r =
a. S(r = a) is the sphere which separates R and R'. If the motion is irrotational then the

velocity can be expressed as q = —Wd ., ¢ being the velocity potential. Thus the equation
of continuity V.g = 0 gives
Vibh=0 in R’
Since there is symmetry about the z-axis, ¢ is independent of @ and so V' = 0
reduces o

az RE
¢+2c3¢ | ¢+-:mﬁ6‘¢r

— =0, inR' 5
“ar? rdr r?abr r? 80 " )
Boundary conditions are as follows :
{i) As the liguid is at rest at infinity, we must have
J?E:[l as r —» oo, (G

or
(ii) and as the normal velocity on the sphere is U cos 8, we must have
_E:F} =Ucos 8 on S(r=a) (T

Since ¢ is harmonic and normal derivative is prescribed at the boundary S(r = a), so
¢ is unique except for an additive constant.

The boundary conditions (i) and (ii) suggest that ¢ must be of the form fl:[] cos 8 and
hence it is assumed as

¢:[ rEE ]Eﬂﬁﬂ. {3}
From (8)
rﬁ=—[ﬁ—ﬂ ]msﬂ. (9
ar ri



Using (6) we get
AcosB@=0 je, A=0 (1)
Using (7} in {9} we get,

Ucosh = %cusﬂ , for all values of @,

a
so that
1
B=12-. ()
Thus
Ua? cosh
= = Jf).;-;.—— {]3]

which determines the velocity potential for the flow.

We now determine the equation of streamlines of the flow. The differential cquation
of the streamlines is

dr _ rdo
dp/dr 64/ rdb
ic.. dr _ rd
Ua?cos® Ua® sin
3 Ird
50 that
s R
dr _ _..:‘cj-g:_.'-.li" 4o
r sin
Integrating.

log r= 2 log{sin 8} + log C  (C is constant)
i.e., r=Csin’ @

which is the equation of streamlines.

2.1.2 Equation of motion of a sphure :

We take the origin at the center of the sphere and the z-axis in the direction of motion.
Let the sphere move with velocity U zlong the z-axis in an infinite mass of liguid at rest
at infinity, The velocity potential of the motion is given by
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Ua?
=—=——cos0
¢ TER

s that

a0 a3

—-=————cosf.
ar rid
Let P(a, B, @) be the spherical polar co-ordinates of any point on the surface of the
sphere. Then the elementary area ds at P is adf.a sin 8do. Again the value of d};ﬂ atP
r

is given by

o] __Uacos?e
a )., 2 (13

The kinetic energy T of the liguid is

T, =2 ffe30 as.

integrated over the surface of the sphere, p being the density of the liquid. Using (13), we
obtain

ol e UZacos® 0
n=-S (-

7

]-{ a? sinBdBdam )

=l

(14}

3
where, M’ = 3 T4 p is the mass of the liquid displaced by sphere.
Let o be the density of the sphere and M be the mass of the sphere so that

M=f§ncm~‘ (15)

and K.E. of the sphere is T = %MU?, [ 16)
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Let T be the total kinetic energy of the liquid and the sphere. Then

T:é(mﬂiw]m,by(zyandm]. (17)
Let Z be the E!-.tt'lé!‘ﬁal force parallel to the z-axis (i.e., in the direction of motion of
sphere). Then from the principle of energy, we have

Rate of increase of total K.E. = rate at which work is being done

- d l[ 1 J 2 }
ie., dl[l M+2M LA} ZU
ie., (M-.-lm']ui,r:zu_whcm g-9U
2 di
ie. Mﬁ=2—%M'U (18)

Let Z' be the external force on the sphere when no liquid is present. Then from
hydrostatical considerations, there exists a relation between Z and Z' of the form

Z = [(o - pVolZ (19)
From (18} and {19), we have
|

MU+1M'I:I=[{G~—|J‘],J'U}E'
L] 1 " 3 P
ie., (M+EM JU=[(n—puu]3
e, MU = N: G;P !
4 noa ?
. . 3 g=p_,
1.2, MU = Z
v 4noal 14noa’ o
3 2 3
™ MU = i%z ' (20)
n+ip '

Equation (20) shows that the whole effect of the presence of the liquid is to reduce the

external force in the ratio (o - p) : [ u’+%p )
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2.1.3 Fixed sphere in a uniform stream :

Let there be a uniform stream of velocity V in the negative direction of z-axis and the

sphere be kept fixed, R’ (r=a) and R (r<a) are the two n:giﬁns separated by the
sphere S(r = a). The motion is irrotational and the velocity potential satisfies

Vi =0 inR" (21)
Boundary conditions are as follows :
(1) As the sphere is fixed, we have

o4 =0, on Sir=a) (22) -
or
{1i) the infinity condition gives
b~Vz as 1= oo, (23)
The boundary condition (ii) suggesis
b= Vz+ ¢ (24)
where §, = 0 as r - w«
Equation (24) gives
Vi, =0 in R’ (25
and from (24) by using (2) we get
%=vﬂ=*vmﬂi on S. (26)
ar &r

The conditions (25) and (26) suggest that ¢, must be of the form

¢, =[Ar+r£1]cusﬂ (27)
A, B being constants.
Using the conditions (25) and (26) we get,

a*v
zrz-ccmﬂ

'¢'1=

3
q:.=‘||.Frumt:r:z;ié}+%E‘L ‘fcusﬂ.
r

b
-
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i . . . atVv .
Here Vr cos 0 is the velocity potential due to the uniform stream and 2—14::05!&] is
r -

the velocity potential due to the presence of sphere.
Now we determine the lines of flow relative to the sphere.

The streamlines are given by the differential equation

_dr __rd0
ch/ér  Op/rod
. dr rd@
L.E., |l" 3 = >
a a’ r
Vkl-}—s—)cusﬂ —V[H-z—r—}-]smﬁ
T4 2
ie., _gmtc,dﬂ:ir_tLE:(_h _A)d,,
ri—-a' r rd-a’ r

Integrating
~2logsin @ =log (r —a’)—logr-logc
where log c is integration constant. '
3
ie., r?sin? ﬂ(]na—)=c,
r3

On the surface of the sphere

+

1 G 3IVsinf
Qo =| —— =~ =""2
r=a

We note that g = 0 for 8 =0, m and it is minimum for 6 = =/2, 37/2 and the minimum
value is 3—\1
2
Hence 8 = 0, x are the stagnation points on r = a.
2.1.4 Moving ‘concentric spheres :

Let the region between iwo concentric spheres of radii a and b(> a) be filled with
liquid which is homogenous and incompressible, R be the region between two concentric
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spheres ie., R(a <r <b). Impuises f, and fl are applied on the spheres S,(r = a) and
54(r = b} respectively in the z direction so that the two spheres start to move with velocities
U and V respectively in the positive direction of z-axis. We intend to determine the resulting
molion.

Since the motion is imotational and symmetne about z-direction, the velocity potential
¢ satisfies the equation

i X at 7
g ¢+Eﬂ+L b cnlﬂﬂ__n

%% ré 2 EIEIE+ a0 inR:{a=<r<b) (28)
The boundary conditions are
(i - 2 =Ucos® on 5(r=a), (29)
(i) - ?’-}T =Vcos B on Sifr=b) (3
The boundary conditions (i) and (ii) suggest that ¢ must be ol the form
B ;
where A and B are constants.
From (31) we get,
o 2B
_Et:;—(h-—r-]—]cusﬂ. (32)
Using (29) and (30) in (32) we get
Ua? — Vb3 (U-V)a’b?
Az dB:
b —as 2(b* -2 )
Therefore, for the starting motion, the velocity potential is given by
1 a’h’ (U-V)
¢=-bﬂ'_—-I{-[[“3U_b1u]r+ 2c2 }Eﬂﬁa- {33']

In this case, the impulsive pressures on the boundaries when the motion is started from
rest, are p¢ so that these are given by

acos® b3 3b?
o [[“"*?]"‘T"}P o
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beos® | 3a? .  b?
o, =b-”-—a-‘[ 3 Uw(n- +TJV}P on Sa.

The impulsive thrust on the inner boundary is therefore,

I =J: w, cosB.2 ma? sin(dO

4mad . :
- “; P[(au%)u—%v}qhi—an

Similarly, on the outer boundary the impulsive thrust is

Amhl
[, =2 p[hzu-(a—;@hﬂjv}wﬂ—an.

3 2

2.2 Axi-symmetric Motion

A motion is called axi-symmetric if it is symmc.lric'about a line, called the axis. Here
the motion is the same in every plane through the axis and the plane is called the meridian
plane. Now taking the axis of symmetry as z-axis and using the cylindrical coordinate
system, every field variable is a function of @m(= (y* + x%)"?) and z only.

2.2.1 Stokes’ stream function :

Let the axis of symmetry be the axis of z and let @(= (y* + x*)') denote distance

from the axis. Let u, v denote the components of velocity in the direction of the z and w.

Then the equation of continuity is obtained by equating to zero the flow out of the annular
space obtained by revolving a smail rectangle dwdz around the axis. The total flow out

parallel to z is -éa—{ulmd'ﬁiklz and parallel to @, the total flow out 15 E%{v.ﬂﬁmdz}ldm.
i
50 that by equating the sum to zero we get the equation of continuity as

a &
—{um +
. E'z{ ) Filn]

This is, however, the condition that vaodz — vmdw may be an exact differential, and if we
denote this by dy, we get

(v y=10.
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10y 1 dy

wéw @ oz
This function y is called Stokes” stream function.
The streamlines are given by

dz _dw
uoowv

i.e., mw(vdz — udw) = 0,
that is, by dy = 0. Hence the equation y = constant represents stream lines.

A property of Stokes’ stream function is thal 2z times the difference of its values at
two points in the same meridian plune is equal to the flow across the annular surfuce
obtained by the revolution round the axis joining the points. For, if ds be an element of the
curve and 8 its inclination to its axis, the flow outwards across the surface of revolution is

I( vcusﬂ—uaiuﬂ],lnmds=2ﬂ‘[[~g:— dx + gdm]=2ﬂjdw =2R{y,~y,).

: . . 1
We might also define the value of Stokes’ stream function at any point P as T of

the amount of flow across a surface obtained by revolving a curve AP round the axis, A
being a fixed point in the meridian plane through P; for, this makes

P
=1]; "[vcnﬁﬂvusinﬂ}.imds

P
=IA{ viodz —uwdm )

and by varying the position of P, we get as before,
{34)
2.2.2 Irrotational axi-symmetric motion :

Let us consider an irrotational motion for which the velocity potential is ¢. Therefore,

U=, = ——a, (35)



Aguin Stokes’ stream function always exists such that
| dy

g
0= —-—— andv:l—w

. 36
w 0w ® &z (36)

Thus
— (37

From (37)

50 that

L., +———=—=0, (38)

Again from (37)

50 that




| 0 __ 2% 2
e Bt T "om:  m’
i o ) O
e, - -+ ——=0. 39
" R et wow =9

Equations {38) and (39) show that $ and w are not interchangeable in the way that is
applied to the velocity potential and stream function of two-dimensional irrotational
moton.

Now we rewrite (38) and (39) in polar co-ordinates. Let g, and gg be the velocities
in the directions of dr and rd8. Then, since @ = r sin 8 and the velocity from right to left

across ds is —]—ﬂf we gel
@ Js

I N
s wro0  rlsing oo’
19w 1 oy
Qe = 5 r " rsinb ar (40)
Burt in irrotational motion, we know that
b d
. =-—, =—— 41
qr -ﬂr' qE “'Eﬁ E :I
: (U 1 oy 10
d —=—and —_—— 42
And sinee r2 sind 50 ﬂran rsin gr r oo ()
© of 1w 2% af 1 N
g0\ r?sin@ 50 cBdr orl rsin® or
i éry g 1 oy
2 )= | =
e, r 53 +smﬂﬁ'ﬂ[5iﬂﬂﬂﬂ'] 0. (43)
Let u = cos 0 so that
ﬂinﬂim-j—- A4
T it (4

then (43) reduces to



dly al oy
2l X | =
r? S-sin Bﬂp[ﬁu] !'J (45)

Similarly eliminating  from (42), we get

B 80, 1 af. a0
6r[r ﬁr]+5inﬁﬂﬂ[hlnﬂﬂﬁ] 0

- P -2 PN A
ie., a:(r ar]+au[“ u }Eu 0 (46)

which is Laplace's equation and has solution of the forms r"P,(p) and r™ P, (1), Po(W)
being the Legendre polynomial of degree n.

Again from (42), we have

&
ﬂ_t=—r?§=—nr“*'h or {n+l)r"P,_, (47)
By

b aP, aP,
PR . 2 Y - 2 | . — 2 el Tl ——
ax (1-p }3:4 (I-p?)r o or (1-p?)r o (48)

On integration, (48) gives us possible solutions for y as

(1-p?) dP, (1-p?) ¢ aP,
- or —— -

n+l

n+l au noor" gp

(49)

2.2.3 Solids of revolution moving along their axes in an infinite
mass of liquid :

Suppose that a solid moves along Ox with velocity U and let Ox be the axis of
revolution. Since the motion is symmetrical about Ox, Stokes’ stream function exists.

Now the normal velocity of the liquid in contact with the surface at P is —% % On
the boundary, we have

| Oy : .
"o s s velocity of the solid along normal
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ﬂ ow fm
&5

i.::.,wL = Ucosf = U—, where cosb = —
@ ds dis
e, dy == Uwndo
Integrating,
Um?
W= =2 ¢ constant
2
2 gin ?
Le., W= —E-I—-‘;m—ﬂ + constant, where @ = r sin 6 (50
. U(l-p?)

Le., Y=—— Ty + constant, where p = cos 0 (31

which is the boundary condition at P.
Again y must satisfy the equation

, 6y ,. Gty
T'E“.:'I'EI—“']&: =0, Whﬁl‘*‘-‘ﬂﬂcmﬁ (52)
d it is known that (52) has soluti form ——t pant Fa g LR Py
.,- o o et r - :‘_. u‘l" — e —— o ——
and it 15 known that (52) has solutions of the n+l O nre o du

As an example, we consider the case of a sphere of radius a. Then withr=a1n {51},
we must have

=—E;;{I—I-l?]+ﬂ (53)
Taking n = 1 in (49), we have the solution of the form
[—u?
y=A—", (54)

r
then at the boundary we must have

A(l-p?) _ va?,,
== (1-p)+C

k]
for all values of p. This requires that C=0and A = - UTE . Hence putting these values
and noting that u = cos 8, (54) gives
_ Ua3sin? B

2r
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Again we know that

L 60 Oy Uatsin? @

(1-p3) - =—-= ;

ou or 2re
. g Ual
Le. o= 73
op  2r?

Integrting
Ua? Ua®
$ = .ili B= 2[:'?’ cos B, (56)

2.3 Ellipsoidal Coordinate System

Let us consider the equation
2 : 72
X + ¥ L.z
az+8 b?+B c?+0
where 0 is a parameter. This represents a family of confocal central conicoids. The above
equation can be reduced to a cubic equation of 0, given by

F(0)=x2(b? +0)c2 +B8)+y? (a2 +0)(c? +8)+2? (a? +B)W b7 +0}
—(a? +0) b2 +B)Wc?+0)=0. {58)

=l,ah>c (57)

MNow
F(-x)=+ve,F(-a?)=+ve,F(-b?)==ve, F(-c?)=+ve F{ax)=-ve.
Hence we conclude that F(8) has three real roots A, p, v such that
' —atsve-blecpc-ct<i.
Thus through any fixed point (x, y, z), there are three conicoids represented by
A = constant, p = constant, v = constant
It may be noted that
A = constant represents an ellipsoid,
i = constant represents a hyperboloid of one sheet,
and

v = constant represents a hyperboloid of two sheets.
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Mow we write

X2 + Y . 22
53+}L b2 +X e +A

Differentiating with respect to x we get,

f{i)= ~-1=0, (58)

dh 2%
r 1 —_— = :
e }Elx al+ A
! én _ 1 2x
Tax f'(hjyal +r
Similarly
a__1 2y
dy f'(A)b2 4+’
E?: 1 2z

dz f'(a)el+h
Direction cosines of the normal to the surface A = constant are proportional to

dh dh Ok
( E}r“ Py ] Similarly, direction cosines of the normal to the surface p = constant
du 614 oy

g a}r ™ J Now the cosine of the angle between these norrnaln-.

arepmpnrlmaltn[

is proportional to

- 1 4x? _m“jfi_“ml}
Fr(Af () (a2+h a2 +p) (b2 +20)b2 +u)

4

fr{u)f'(p)

which vanishes if f(1) = 0, f(u) = 0. Hence A, p, v give the system of orthogonal curvilinear
coordinates called ellipsoidal co-ordinates. Again A, p, v are the roots of F(8) =0, so that
F(8) can be written as

(FCA)-F(p)) (59)

F(8) = (A - 8) (n-8) (v-8)
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Let us put 8 = — a%, = b, — ¢* in (35) successively and we get
(a2 +ANa2+p)a?+v)
(a2 —b2 )al —¢?)

(b2 4R)(b2 +p)(b? +v)
(b2 —a? yb?-c2)

2

Iic:2 +11Lc3 +uMc? +u}|
(c?-a?)(c?-b?)
Now if ds is an element then

ds? =h2dA? +hldp? +hdv?

wherne
2 53 2
2 _[ 0x ey bz
vt =(5) +[E (&)
A
h==[a_1]2+r£th+f§£\|:
: au '\ B REFLJ
h1=(§ihri“*+[§z_f
T Aav) Tlev) \av/o
Now it is easy to see that
ap o XL ¥T ozt
' {a? k12 (b2 +012 (e 4a)?
samilarly,
4h2 o XE 13 27
otatap)? (bTap)? (o +p)l
an?=——X1 A .

We can write

(A=0)p- HJH—E}
fifB)=s — T
(&)= {a1+ﬁ]{h1+ﬂl}fc1 JI-IEI‘.t
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& ':l."-."],l“::‘l.—\f}
wf R = - s,
(a2 +AXb2=A)c? <4)
Thus
- A—uldA=vi
4hi'f - { ) .!'.'l..?.{.._.._‘ s
(a2 +A b2+ e +4)
3 iH—:"-HM‘N
4h? = —emm .
(a2 +pu)b?2 +plc? +n)
—A W v=
4h§ — {\r ]{ “:.'..-\..._.--——

(a2 +v)ib? +v)c? +v)

So the Laplace operator in ellipsoidal coordinates is
groe L [ofhahs ) ofhihy ) afhib: 2
hyhahyp bl hy &k ) oul hy duf évi hy dv

2 2 .
=u-v)( K, ) ¢+w—m[x 3] prin-m(K, 2 ) ¢

Yo
where
K, =(a2=A)}b2-A)}c?-A)
K, =(a“® +u b2 +pde? +p)
K,=(a2+v)(b2+v)(c?+v)

Solutions of this Laplace equation are called cllipsoidal harmonics.

2.3.1 Translatory motion of an ellipsoid :

We consider the ellipsoid S : L =0,
x? ¥’
+
a? b?
wivich moves through a liquid in the direction of x-axis with velocity U, Since the motion
is irrotational, the velocity potential ¢ satisfies
V=0 for L2z0.
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2 =0 (60)
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The boundary cond: . ons are

{i' —— = Uicos@ , on L=10

AT

where 8, is‘the angle between the normal and x-axis,

. o ox
ie, —=——==U—, L =0,
b, L

since dn =h ,dA, costl, = . i':: Thus
h, @

dp=-Ux on A=0 (61)

(ii ¢ is regular at infinity '
e, d—=0 as A — o (62)
For solution of the Laplace equation (60) in the ellipsoidal coordinate system, we take

oy

dt .
- . S : 5 3
b Cx!iu: 0K, which tends to 0 as A =» w0 (63)

where C 15 constant.

Using the boundary condition (61} in (62) we get

ax ax [~ dt Cx
gy =2 _ 1 _
E a}bjn (a7 +0K, al.abc' VhereA=0
Again
ox | _X% ., when A =0
ah  2al
therefore,
bell i dr
C=-2= where o, = — ) 64
z—ﬂn oy abc e +t”{r (64)
Thus finally we get
b= abellx I"-' . dt L
2oy i (al +0)¥ (b2 +1)V2 (a2 41} (65)
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and on the ellipsoid we have from (64)

a,xU
¢_1_11-n,‘ : {ﬁﬁ}
The kinetic energy of the liquid is
I X LT
T__ipv[q}ﬂndﬁ-E[EHHDJIxEGSBde

Since cos 0, ds is the projection on the plane x = 0 of the area ds of the surface, and the

last integral gives the volume of the ellipsoid as E—%b'—: we find

Ma,U?

T 2(2-ay)
where M’ is the mass of liquid displaced by ellipsoid.
When the ellipsoid has, in addition, velocity components V, W parallel to y-axis and
z-axis. we get, by superposing the results analogous to (66), the velocity potential to be

abell j"’ dt abeV, j"' dt

- a4 = = ---—+. . —
I=ag Jr (a?+0IK, Z-f,

abcW, p= dt
- _— _|- - - wom o m——
vib?+)K, ?:—';:;,J.«-L:! +1)K,

where e, ¥o are defined by writing b% + 1, ¢ + t for a° + tin (5).

2.4 Source, Sink, Doublet

Source :

Source is a point at which liquid is created and distributed at a uniform rate and the
liquid flows outward symmetrically in all directions from the point. If the rale of emission
of the volume of liquid is 4tm, then m is called the strength of the source. When the rute -
of emission is constant then the source is called steady.

Let us consider a steady irrotational motion due to the source of strength m. The
volume of the liquid flowing oul in a spherical surface of radius r and the source at its center
must be equal to the volume of liguid created per unit time. Let ¢ be the velocity potential
due to a simple source of strength m, and the liquid be at rest at infinity. Then

o

dmm = flux of liquid across the spherical surface = — 3 4mrs
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So,

o= ? + constant
Since constant velocity potential does not change the motion, we may neglect the constant
or may redefine the velocity potential by including the constant in it.

Sink :
A sink is a source of negative strength.
Naote : A source or sink implies creation or annihilation of fluid at a point. Both are points

at which the velocity potential is infinite. A source and sink are purely abstract conception
but they are to be considered due to exigencies of analysis.

Doublet :

A combination of source and sink of equal strength m at a small distance 8s apart,
when the limit of m is infinitely large and 8s is infinitely small, but mds remains finite and
equal to p, then it is called a doublet of strength p and the line &s taken from — mto m
is called the axis of the doublet. Let v denotes the direction of the axis of the doublet.
So,

(L5 UTH r

1 X
[¢], = lim {—m[lj -I-m[i-} = Tim mc‘%*“w-'":.— = fpr- —{H

where the source is at Q and the sink is ar Q. and in the limit both Q and Q' tend o P.
Thus

o1y _H or
W]P_Hﬁlp[r) rd gv
Again, since r = - v cos B
g pcost
[dle ='-rz-31{*vcusﬂj= =



2.5 Images

If in a liquid a surface S can be drawn across which ihere is no flow. then any systems
of sources, sinks and doublets on opposite sides of this surface may be said to be images
of one another with regard to the surface. And if the surface S be regarded as a rigid
boundary and the liquid is removed from one side of it, the motion on the other side will
remain unaltered.

2.5.1 Image of a source with respect to a rigid plane :

Let S(x = 0) be a fixed plane and a source of strength m be placed at Q(a, 0, 0) in
front of § (see figure 1.1.). Let ('1— a, (0, O) be another point which is image point of
with respect to S. Let P be any fixed point and ry, r; be the distances of Q. Q' respectively
from P.

'y

Qr['_aiﬂ!“} Q(n'll}'ll]}

Figure 2.1

Since the motion is irroiauonal on the right of S{x = 0} due to the source at Q. so0
Vi =0inR:x =0 excepl at Q,
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therefore,

¢ ~ M near Q
r

where r; is the distance from Q (r; — ), and also ¢ is regular at infinity. Again, éﬂ =0
. X
on Six = 0).
Now we set

m
¢=E+¢'|

where ¢, is due to the presence of the rigid wall. Then

Vg, 2924,_1;?2(&):@

r

and

r

% 0% af1)__
ax  Ox ex

Now

P =(x-a)?+y2+22, 1] =(x+a)? +y? +22

%——ma[]]—@- on S

ox  ax\n ) 1}

m .
We choose ¢, = —, the reason for this is as follows :

Therefore, on x =0
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Hence

o, == inR.
[
Therefore,
Iy Iy

This shows that the image of a point source with respect to a point is a point source of
same strength at the image point. '

2.5.2 Image of a source in front of a sphere :

Let S(r = a) be a fixed sphere of radius a and a source of strength m be placed on
z-axis at a distance { from the center of the sphere, R{r = a), R'(r = a) are two regions
separated by the sphere S(r = a) (See figure 2.2).

Figure 2.2

Let Q)" be the inverse point of Q with respect to Ihtf sphere then, OQ' = E:-.

Let P be any field point, which is at a distance r) and r; from Q and Q' respectively
and (r, 8, @) be the co-ordinates of P.

The velocity potential ¢ is composed of two parts, one is ¢, which is due to the source
of strength m and another is ¢, which is due to the presence of spherical boundary. The
later part will be the velocity potential of the required system.

78



As the motion is irrolational, the velocity potential $ satisfies Laplace’s equation
V% =0 in R' except at Q.
and the conditions
{i) ¢ ~ rE near ) where r; is the distance from Q,
I
(ii) ¢ is regular at infinity
. . o
{iii) and since S is fixed, i 0.on 5.

Let us set

V%, =0 and %:%—mg—[iJ=—m£[—l--] on S.

r orirn
Mo,
i 1 1 1 i rn
e —— e — ==y — P (c050)
L ri+f?=2rfcos® f 2 fzf“ o
' J-— (%) -z—rfcnsﬂ+l

where P,(cos 8) is Legendre's polynomial.

Agﬂin.r::DQ'rE%:b{n

1 | 1 v be
— = =— ¥ —P_ {cosB).
r; /12 +b2 —2rhcosh fgur““ .

On §,

- s n-1
Oy _ ‘""Z “fa-n.i P, (cos@).

or errs

Let us take

<A
&, =2 r_ﬁill_ P, (cosf)

n=l
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sothat 18 regular al infinity, and on 5,

- 'I " 'I
[Eﬂl L= _Z E“ -~ }AD—T‘ feosi.

OF ay H 2
Jl;“ =L d

Thus. we obtain

S — (n+11A
—I‘HZI 5 P' [:CD.HB}_—Z'E :I":: “P, (cosB).

f=0 n=1
Hence
__mn aznt
" n4] fo+i
Thus
b=y P“{“f.“mw atet By (cos6) & gamt Py (cost)
pn(n+1)fn re f"" rott d(n jfosl  pand

_mx~fa
. 2

=L}

[ ] P{cusﬂ} me  alml P{cusﬂ}

ol Copml g [n+]}fn*l Copnl

Ml

E_.b 5 .._bn_ - < an+l (h} {Cﬂhﬂ'] _ma ~m el
P, (cosB) E{n+|}f|1+| l-rn-] frz ZW . (cosB)

T IZ L P lcos8)

Set,
A== F ' f_’ L p (cosD).
" (rf+y?-2rycosfh)i2 el
Hence
bM ._' bd kol I.n
fﬂ 1"‘[& I,é'r—“:rpn {cosB).
Therefore,



