
PREFACE

In the auricular structure introduced by this University for students of Post- Graduate
degree programme, the opportunity to pursue Post-Graduate course in Subject introduced by
this University is equally available to all learners. Instead of being guided by any presumption
about ability level, it would perhaps stand to reason if receptivity of a learner is judged in the
course of the learning process. That would be entirely in keeping with the objectives of open
education which does not believe in artificial differentiation.

Keeping this in view, study materials of the Post-Graduate level in different subjects are
being prepared on the basis of a well laid-out syllabus. The course structure combines the
best elements in the approved syllabi of Central and State Universities in respective subjects.
It has been so designed as to be upgradable with the addition of new information as well as
results of fresh thinking and analysis.

The accepted methodology of distance education has been followed in the preparation
of these study materials. Co-operation in every form of experienced scholars is indispensable
for a work of this kind. We, therefore, owe an enormous debt of gratitude to everyone whose
tireless efforts went into the writing, editing and devising of a proper lay-out of the materials.
Practically speaking, their role amounts to an involvement in invisible teaching. For, whoever
makes use of these study materials would virtually derive the benefit of learning under their
collective care without each being seen by the other.

The more a learner would seriously pursue these study materials the easier it will be for
him or her to reach out to larger horizons of a subject. Care has also been taken to make
the language lucid and presentation attractive so mat they may be rated as quality self-
learning materials. If anything remains still obscure or difficult to follow, arrangements are
there to come to terms with them through the counselling sessions regularly available at the
network of study centres set up by the University.

Needless to add, a great deal of these efforts is still experimental-in fact, pioneering in
certain areas. Naturally, there is every possibility of some lapse or deficiency here and there.
However, these do admit of rectification and further improvement in due course. On the
whole, therefore, these study materials are expected to evoke wider appreciation the more
they receive serious attention of all concerned.
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Vice-Chancellor
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UNIT - 1

 1.1 Calculus on Rn :

Let R denote the set of real numbers. For an integer n > 0, let Rn be the cartesian product

R R R R   ��

n times

of the set of all ordered n-tuples ( , , )x xn1
�

 of real numbers. Individual n-tuple will be denoted

at times by a single letter, e.g. x x xn y y yn ( , , ), ( , , )1 1
� �

 and so on.

Co-ordinate functions : Let 1 2( , , ) . n n
ix x x x R  Then, the functions :iu  nR R  defined

by 1 2( , , ) � �
i n i

iu x x x x x

We are now going to define a function to be differentiable of class C
 .

A real-valued function f U C R Rn:  ,

U being an open set of Rn, is said to be of class ck if

i) all its partial derivatives of order less than or equal to k exist and

ii) are continuous functions at every point of U.

By class C0, we mean that f is merely continuous from U to R. By class C
 , we mean that

that partial derivatives of all orders of f exist and are continuous at every point of U. In this case,
f is said to be a smooth function.

Note : By class C  on U, we mean that f is real analytic on U i.e. expandable in a power

series about each point on U. A C  function is a C
  function but the converse is not true.

Exercise : 1. Let f R R:   be defined by

1
2( ) ,


 xf x e x  0

= 0, x = 0

Show that f is a differentiable function of class C
 .

Solution : Note that

  
   



f o
h

f o h f o

h h
e
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h
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lim ( ) ( ) lim

0 0

1
2

Apply L’Hospital’s Rule, on taking, h
u

 1  we see that h o  gives u
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e
u
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2

= 0

Again, 2
1

3( ) 2 , 0
  xf x x e x

 f o( )  


   lim ( ) ( )
h

f h f
h0

0 0  and on putting 
1

, u
h

 we get

2

4lim 2
( )

      u

u
f o

u e

Applying L’ Hospital rule successively, we find

f ( )0 
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Proceding in this manner, we can show that.

f n ( ) ,0 0  for n  1 2, ,�

Hence f is a function of class C
 .

A mapping f U V: 

of an open set U  Rn to an open set V   Rn is called a homeomorphism if

i) f is bijective i.e. one to one and onto, as well as

ii) f, f–1 are continuous.

Exercise : 2. Let f R R:   be such that

f x x( )  5 3

Show that f is a homoeomorphism on R.

3. Let f R R:   be defined by

     f x x( )  3

Test i) whether f is a differentiable function of class C
  or not

ii) whether f is a homeomorphism or not. [ Ans. : i) f is of class C
 .

ii) f is homeomorphism ]

Solution : 2. Note that

f x f y x y( ) ( ) ( )  5

 f x f y( ) ( )  if and only if x y
Hence f  is one one.

Let y x 5 3

 x
y  3

5

and hence f R R 1:  is defined as

f y
y  1 3

5
( )

Again, f f y y 1( )� 	  and f f x x 1 ( )� 	 ,  Thus f is onto.

Consequently f is bijective.

f
U V


Rn
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Both f f, 1  are continuous functions, (being polynomial functions)  f is a homeomorphism

on R.

Note : (i) If f U R Rn m:    is a mapping, such that

f x x f x x f x xn n m n( , ) ( , , ), , ( , , )1 1 1 1
� � � � � 	

where ( ) , �

j jf x u f  1 ,  jj m u  being co-ordinate functions on mR

we define the Jacobian matrix of f at ( , , ),x xn1
�  denoted by J, as

J 
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(ii) In particular, when m n  i.e., if :  n nf U R R  is a mapping such that,

if f f f ( , , , )1 2
� f n  has continuous partial derivatives i.e. if each f i 1,2, , .�i n  has

continuous partial derivatives on U, we say that f is continuously differentiable on . nU R

(iii) If f f f n ( , , )1
�  is continuously differentiable on  nU R  and the Jacobian is non-

zero, then f is one-one on U.

Exercise : 4. Consider the mapping

: R R2 2
given by

: y x x1 1 2 cos

y x x2 1 2 sin

nR
f

v

mR

iu

R

fCU
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Show that  is one-to-one on a sufficiently small neighbourhood of each point ( , )x x1 2  of

R2 with x1 0 .

Solution : The given mapping

1 2 2 2( , ) : R R      is given by 1 1 2 2 1 2cos , sinx x x x   

Then, we have




1

1
2

x
x cos ,  




1

2
1 2

x
x x  sin ,  




2

1
2

x
x sin ,   




2

2
1 2

x
x x cos

Hence each 



i

jx
, , 1, 2i j   is continuous for all values of x1  and x 2  in R2. Thus   is

continuously differentiable on R2.

Again the Jacobian is given by

J =



1

1x



1

2x  x1 0   if and only if x1 0  in R2.




2

1x



2

2x

Consequently,   is one-to-one on a sufficiently small neighbourhood of each point ( , )x x1 2

of R2 with x1 0 .

A mapping
f : U   V

of an open set U   Rn onto an open set VRn is called a Ck – diffeomorphism, k 1  if

i) f is a homeomorphism of U onto V and

ii) f, f–1 are of class Ck.

when f is a C
  – diffeomorphism, we simply say diffeomorphism.

Exercise : 5. Let  : R R2 2  be defined by

 ( , ) ( , )u v ve uu
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Determine whether   is a diffeomorphism or not.

6. Let  : R R2 2  be defined by

 ( , ) ( , )x x x e x x e xx x1 2 1 2 1 22 2  

Show that   is a diffeomorphism. [ Ans. : 5.   is a diffeomorphism ]

For i n 1, , ;�  let :i nu R R

be the coordinate functions on nR  i.e. for every p Rn

1. 1) u p pi i( )   where p p pn ( , , )1
�

Such u si  are continuous functions from R Rn  . . We call this n-tuple of functions

( , , , )u u un1 2
�  the standard co-ordinate system of Rn.

If f U R Rn n:  

is a mapping defined on U   Rn, then, f is determined by its co-ordinate functions

( , , )f f n1
�  where

1.2) f u f i ni i � �, , ,1

and each f U R Ri n:    are real valued functions, defined on an open subset U of Rn.

Thus for every p  U   Rn

f p u f pi i( ) ( )( ) �  ( )iu f p  where f p q q qn( ) ( , , )  1
�

( , , )i i nu q q �  qi  by 1.1)

1.3) consequently f p f p f p f pn( ) ( ), ( ), , ( ) , 1 2
�
 �    p U Rn

The map f is of class ck if each of its co-ordinate functions f i ni : , , 1 �  is of class ck.

R
Rn

ui
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 1.2 Differentiable Mainfold :

Let M be a Hausdorff, second countable space. If every point of M has a neighbourhood
homeomorphic to an open set in Rn, then

M is said to be a manifold. Thus in a manifold for each p M ,  there exists a neighbourhood U

of p M  and a homeomorphism   of U onto an open subset of Rn. The pair ( , )U   is called

a chart.

Each such chart ( , )U   on M induces a set of n real valued functions on U defined by

2.1) x ui i �  ,  i n 1 2, ,�

where u si ,  are defined by (1.1) and it is to be noted that whatever be the point p and the

neighbourhood , , 1,2,iU u i n �
 always represent co-ordinate functions. The functions

( , , )x x xn1 2
�  are called coordinate functions or a coordinate system on U and U is called the

domain of the coordinate system. The chart ( , )U   is sometimes called an n-coordinate chart.

Let ( , )V   be another chart of p, which overlaps the previous chart ( , ).U   Let ( , , )y yn1
�

be local coordinate system on V of p, so that

U

V

p.

M

Rn



 ( )U V

 ( )U

 ( )V

 ( )U V



R

1

1

 


( )p
( )U

Rn

ui

p

M

U

R

ix
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2.2) y u i ni i � �, , , , ,1 2

We can construct two composite maps

2.3)         1 : ( ) ( )U V R U V Rn n

        1 : ( ) ( )U V R U V Rn n

If these maps are of class ck ,  we say that the two charts ( , )U   and ( , )V   are ck -

related. If q U V  ( )  and

g U V R U V Rn n: ( ) ( )     

is a mapping defined on an open set in Rn, we write

2.4) g q q( ) ( ) .   1� 	

Exercise : 1 Find a functional relation between the two local coordinate systems defined
in the overlap region of any point of a manifold M.

Solution : given that

q U V  ( ),

g q q( ) ( ) ( )  � 1  by 2.4)

Let ( ) ,p q  where p U V  .  Then

g p p p    ( ) ( ) ( )� 	 � 	� 	 
�

1

or    ( ( )) ( ) , 1,2, ,i iu g p u p i n    �

or g p pi i ( ) ( )� 	   by 1.1)

or g x p x p y pi n i( ), , ( ) ( ),1
�� 	   as

x p u p pi i i( ) ( ) ( )  � 	

    1 1( ) ( ) , , ( ) ( ), , ( )    � �
n np p p x p x p  and

 ( ) ( ) ( ) 1,2, .i i iy p u p p i n     �

consequently,

y q x x xi i n ( , , , )1 2
�

Note : If we consider

g q q( ) ( ) ,   1
 �
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then one finds x g y y yi i n ( , , , ),1 2
�   i n1, ,�

A collection  ( , ) , ,i iU i A     (an index set) of ck related charts are said to be maximal

collection if a co-ordinate pair (V,  ), ck related with every chart is also a member of  .

A maximal collection of ck-related charts is called a ck-atlas. A ck n-dimensional differen-
tiable manifold M is an n-dimensional manifold M together with a ck-atlas.

Unless otherwise stated, we shall consider a differentiable manifold of class C
 .

Examples : 1. Rn with the usual topology is an example of a differentiable manifold with

respect to the atlas (U,  ) where U = Rn and  = the identity transformation.

2.   Let S1 be the circle in the xy plane R2, centered at the origin and of radius 1. We give
S1, the topology of a subspace of R2. Let

U p x y s y1
1 0   { ( , ) | }

U p x y s y2
1 0   { ( , ) | }

U p x y s x3
1 0   { ( , ) | }

U p x y s x4
1 0   { ( , ) | }

Then each Ui is an open subset of S1 and , 1, 2, 3, 4  ii
S U U i

Let I = (–1, 1) be an open interval of R and we define

1 1:U   IR be such that

1( , )x y x i.e. 1
1 ( ) ( , ), 0x x y y  

2 2:U   IR be such that

2 ( , )x y x i.e. 1
2 ( ) ( , ), 0x x y y  

3 3:U   IR be such that

3 ( , )x y y i.e. 1
3 ( ) ( , ), 0y x y x  

4 4:U   IR be such that

4 ( , )x y y i.e. 1
4 ( ) ( , ), 0y x y x  

Note that each i  is a homeomorphism on R and thus each ( , )ui i  is a chart of .S  Now

U U1 2  ,  U U st
1 3 1   quadrant, U U nd

1 4 2   quadrant, U U th
2 3 4   quadrant,

U U rd
2 4 3   quadrant.
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Then

A U ii i {( , ) : , , , ) 1 2 3 4  is an atlas of s1

As U U 3 ,  let p U U 1 3 ,  then

( )( ) ( , )  1 3
1

1�
  y x y x  and

( )( ) ( , )  3 1
1

3�
  x x y y

Thus each  1 3
1

�
  and  3 1

1
�

  is of class C
 . Similarly, it can be shown that each

 1 4
1

�
 ,   4 1

1
�

 ,   2 3
1

�
 ,   3 2

1
�

 ,   2 4
1

�
 ,   4 2

1
�

 ,  is of class C
  and hence s1 is an one

dimensional differentiable manifold with an atlas   1,2,3,4
( , )i i i
U 

Exercise : 2. Let (Mn, A) be a differentiable manifold with a C
  atlas A. Let pM. Then

there exists ( , )U  A such that pU and  ( ) .p  0

Note : 1. It is to be noted that every second countable, Hausdorff Space M admits parti-
tions of unity. Partitions of unity admits Riemannian metric. Our aim is to study a Riemannian
Manifold and for this reason we consider such topological spaces for a manifold.

2. It is enough to consider only a topological space for studying mainfold.

 1.3. Differentiable Mapping :

Let M be an n-dimensional and M be an m-dimensional differentiable manifold. A

mapping f M N:  .

is said to be a differentiable mapping of class ck, if for every chart (U,  ) containing p of M

and every chart (V,  ) containing f(p) of N

Rm

M
f

.p .f(p) f(U) N

Rn

 � �f 1





.
( )p  ( )U ( ( ))

.
f p

 ( )V

U V
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3.1) i) f(U)   V and

ii) the mapping    � �f U R V Rn m   1: ( ) ( )  is of class ck.

By a differentiable mapping, we shall mean, unless otherwise stated, a mapping of

class C
 .

If ( , , )x xn1
�  and ( , , )y ym1

�  are respectively the local coordinate systems defined in a

neighbourhood U of p of M and V of f(p) of N, then it can be shown, as done earlier

3.2) y gj j nf x x� � ( , , ),1  j m 1, ,�

where g is a differentiable function defined on V   N and

3.3) g q f q( ) ( )( ),  � �
1  q U ( ).

Let M and N be two n-dimensional differentiable manifolds. A mapping

f M N: 

is called a diffeomorphism if

i) f and f –1 are differentiable mappings of class C


ii) f is a bijection

In such cases, M and N are said to be diffeomorphic to each other.

Exercise : 1. Let M and N be two differentiable manifolds with M=N=R. Let (U,  ) and

(V,  ) be two charts on M and N respectively, where

U = R

  : U   R be the identity mapping and

V = R

  : V   R be the mapping defined by

( ) .x x 3

Show that the two structures defined on R are not C
 -related even though M and N are

diffeomorphic where

f M N: 
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is defined by

f t t( ) / 1 3

Hint : Note that, ( ) ( ) � �f x x 1  and ( )( ) ./ �  1 1 3x x  Thus  � 1  is of class

C
  but  � 1  is not of class C

 . Again

( ) ( ) � �f x x 1

Also f y f x( ) ( )  if and only if y x .  Thus f  is one-one. Finally

f y y 1 3( ) ,  so that

f f y y 1( )� �  and f f x x1 ( ) .� �   Thus f  is a bijection.

Note : A diffeomorphism f  of M onto itself is called a transformation of M.

A real-valued function on M ; i.e.

f : M   R

is said to be a differentiable function of class C
 , if for every chart (U,  ) containing p of M,

the function

3.4) f U R Rn
�    1 : ( )

is of class C
 .

We shall often denote by F(M), the set of all differentiable functions on M and will
sometimes denote by F(p), the set of functions on M which are differentiable at p of M.

Rn

R

M

f

U

 (U)

f � 1

.p

 ( )p



1
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It is to be noted that such F(M) is

i) an algebra over R

ii) a ring over R

iii) an associative algebra over R and

iv) a module over R

Where the defining relations are

a) ( )( ) ( ) ( )f g p f p g p  

b) ( )( ) ( ) ( )fg p f p g p

c) ( )( ) ( ), f p f p     f g F M, ( ),   R,  p M .

 1.4. Differentiable Curve :

We are now in a position to define a curve on a manifold.

A differentiable curve through p in M of class rC  is a differentiable mapping

 : [ , ]a b R M  , namely the restriction of a differentiable mapping of class

rC  of an open interval ] c, d [ containing [ a, b ].

such that

4.1) ( )t p0      , a t b 0

Also

4.2) ( ) ( ) ( ) ( ) ( ( ))x t u t u ti i i
� �     � � � �  u t t ti n i  1( ), , ( ) ( )�� �

We write it as

4.3) x t ti i( ) ( ) 

The tangent vector to the curve ( )t  at p is a function

R

Rn

ui

M

R
[     ]



0t


0( )p t 
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X F p Rp : ( ) 

defined by

4.4) X f d
dt

f tp
t t

 ���
�
�	 


( ( ))

0

lim ( ( ) ( ( )
h

f t h f t
h t t


 �

��
�
�	 0

0

 

where p t f F p ( ), ( )0

It can be shown that it satisfies

4.5) X af bg a X f b X gp p p( ) ( ) ( )   : Linearity

4.6) X fg g p X f f p X gp p p( ) ( ) ( ) ,   f g F p, ( ) : Leibnitz Product Rule.

Note : Each function Xp : F (p)   R, cannot be a tangent vector to some curve at pM,
unless it is a linear function and satisfies Leibnitz Product Rule.

Exercises : 1. Let a curve   on Rn be given by

 i i ia b t  ,  i n 1 2, , ,�

Find the tangent vector to the curve   at the point ( ).ai

2. If C is a constant function on M and X is a tangent vector to some curve   at pM,
then Xp.C = 0

[ Ans. i) ( , , , )b b bn1 2
�

ii) use 4.5), 4.6) and the definition

of constant function.

Let us define

4.7) ( )X Y f X f Y fp p p p  

4.8) ( )bX bX fp p        ,  bR

If we denote the set of tangent vectors to M at p by Tp(M), then from 4.7) and 4.8)
it is easy to verify that Tp(M) is a vector space over R. We are now going to determine the basis
of such vector space.

For each i = 1, ... , n, we define a mapping


x

F p Ri : ( )
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by

4.9)




x

f
f

x t
p

i
p

i


�
�
  
��

�
�( )

( )

Note that


x

af bgi
p



�
�
  ( )




( )
( )

( )
af bg

x t
p

i



��

�
�            by   4.9)   ,        a, b R, f, gF (p)

 
��
�
�  
��

�
�a

f

x t
p b

g

x t
p

i i





( )

( )
( )

( )    by   a)  of 1.3

 
��
�
�  
��

�
�a

f

x t
p b

g

x ti i





( )

( )
( )       by   a)  of 1.3

 
�
�
  
�

�
a

x
f b

x
gi

p
i







Thus such a mapping satisfies linearity property. It can be shown that








x

fg g p
x

f f p
x

gi
p

i
p

i
p



�
�
  


�
�
  


�
�
( ) ( ) ( )

Let us define a differentiable curve

  : [a, b]  R   M

by

4.10)  i it t t( ) ( ) 0   , for fixed i

 i t( ) , 0  j i i n  1 2 1 1, , , , , ,� �

then

d
dt

f t
f t

t
d t

dtt t
i

i

n i

t t


 



( )

( )

( )
( )

� �
� ��

��
�
��

 
�
�
�

�
�
�  


0

0
1

 by chain rule

0( )( )i
t

f

x t 

       for fixed  i,  by (4.3)

�
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f
x t

pi ( )
( )

i
p

f
x

    
 by   (4.9)

Thus we can claim that each 
ix

 
  

, i n 1 2, , ,�  is a tangent vector to the curve 

defined above, at p t ( ).0

Again from the definition of the tangent vector,

X f d
dt

f tp t t ( ) |� 	
0

 
�
�
�

�
�
� 


 


f t

t
d t

dti

i

i

n

t t

( )

( )
( )� �

1
0

by chain rule

 

��


�� 

 dx t
dt

f t

x t

i

t t
i

i

n ( ) ( )

( )
0

0

1

 

� �

 by  (4.3)

 �
��

�
�	
�
��

�
�	

 dx t
dt x t

f
i

t ti

n

i
p

( )
( )

01




We write it as

4.11) X p
xp

i
i

pi

n

 

�

�

 


( )
1

 where

4.12)  i
i

t t

p
dx t

dt
( )

( )
, �

��
�
�	  0

  i n 1, ,�

Thus each  i  : M   R, i n 1, ,�  is a differentiable function and every tangent vector,

say Xp, to some curve, say ( )t  at p t ( )0  can be expressed as a linear combination of the

tangent vector 


x ti ( )
,  i n 1, ,�  to the curve   defined in (4.10)
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If possible, for a given linear combination of the form  


i
i

p
x

( )��
�
� , where  i ,s are

functions on M, let us define a curve   by

   : ( ) ( ) ( )i i it t p t 0 , 0a t b 

then it can be shown that the tangent vector to this curve is  


i
i

p
p

x
( )��

�
�

If we assume that

 


i
i

p
p

x
( )��

�
�  0

then,

 


i
i

p

k

i

p
x

x( )��
�
�  0  where x k : M   R, 1,2, .K n �

or  


i
k

i
pi

p x
x

( )
�

�  0

 k p( ) . 0   for 1,2, . �k n

Thus the set 

x

i ni
p



�

� 

�
�
�

	


�

: , ,1 �  is linearly independent. Hence we state

Theorem 1 : If ( , , )x xn1
�  is a local coordinate system in a neighbourhood U of p  M,

then, the basis of the tangent space Tp(M) is given by





x xp

n
p

1


�

�



�


�

�
�
�

	


�

, ,�

Let us define T(M) U
p M T (M).p   This T(M) is called the tangent space of M.
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 1.5. Vector Field :

In classical notation, if to each point p of R3 or in a domain U of R3, a vector

 : ( )p p

is specified, then, we say that a vector field is given on R3 or in a domain U of R3.

A vector field X on M is a correspondance that associates to each point pM, a
vector Xp  Tp(M). In fact, if f  F(M), then Xf is defined to be a real-valued function on M,
defined as follows

5.1) (Xf) (p) = Xp f

A vector field X is called differentiable if Xf is so for every fF (M). Using (4.11) of  1.4,

a vector field X may be expressed as

5.2) X
x

i
i  



where  i ’s are differentiable functions on M.

Let ( )M  denote the set of all differentiable vector fields on M. We define

5.3) ( )X Y f Xf Yf  

( ) ( )bX f b Xf

It is easy to verify that ( )M  is a vector space over R.

Also, for every fF(M), f X is defined to be a vector field on M, defined as

5.4) (fX) (p) = f (p)Xp

Let us define a mapping as     [ , ] : F(M)   F (M) as

5.5) [ X, Y ] f = X(Yf) – Y(Xf),   X, Y ( )M

Such a bracket is known as Lie bracket of X, Y.

Exercises : 1. Show that for every X, Y, Z in  (M), for every f, g in F(M),

i) [X, Y]    (M) ii) [bX, Y] = [X, bY] = b[X, Y], bR

iii) [X + Y, Z] = [X, Z] + [Y, Z] iv) [X, Y + Z] = [X, Y] + [X, Z]

�
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v) [X, X] =  vi) [X, Y] = – [Y, X]

vii) X,[Y,Z] Y,[Z,X] Z,[X,Y]     : Jacobi Identity

viii) [fX, gY] = (fg) [X, Y] + {f(Xg)}Y – {g(Yf)X}

a) [X, fY] = f [X, Y] + (Xf)Y

b) [fX, Y] = f [X, Y] – (Yf)X

2. In terms of a local co-ordinate system

i) 




x xi i

,�
��

�
�	  0

ii) [X, Y] =  


 


i
j

i
i

j

i
i j x x



��


�

,
 

x j ,  where X   


i

ix
,  Y   


j

jx

3. Complete [X, Y] where

i) X
x

 
 1 ,  Y

x
e

x
x 



2

1
3

ii) X x x
x

 1 2
1



,  Y x
x

 2
2



4. Prove that

i)  (M) is a F(M) module

Hints : 1. viii) Note that

{f(Yh)} (p) = f(p) (Yh)p     by  (5.4)   of  1.5)

= f(p) Yp
h          by   (5.1)  of  1.5)

Again, {(fY)} (p) = (fY)(p) h     by  (5.1)

= f(p) Yp h       by  (5.4)

Thus {f(Yh)}(p) = {(fY)h}(p), p

f(Yh) = (fY)h

Use the above result, 5.5) of  1.5 & (4.6) of  1.4, the result follows after a few steps.
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. 1.6. Integral Curve :

In this article, we are going to give the geometrical interpretation of a vector field.

Let Y be a vector field on M. The assignment of the vector Yp

at each point pU   M, is given by

Y : p   Yp  Tp (M)

A curve   is an integral curve of Y if the range of   is contained in U and for every

a t b 0  in the domain [a, b] of  , the tangent vector to   at  (t0) = p coincides with Yp i.e.

Y Yp  ( )t0

Y f Y fp t ( ) ,
0

, f  F(M)

       
�
��

�
�	 

d
dt

f t
t t

( )( )� 
0

by  (4.4) of  1.4

Using 4.11)  1.4 one can write

 


i
i

pi

p
x

f( )��
�
�  ���

�
�	 

d
dt

f t
t t

( )( )� 
0

  where i ’s are functions on M.

 �
��

�
�	
�
�
�
�


 dx t

dt x
f

i

t t
i

p

( )

0




As 
x

i ni : , , 1 �� �  are linearly independent, we must have

i
i

t t

p dx
dt

( )  
��
�
�  0

or  i
t t

i

t t

t dx
dt

( )� � 


 
��
�
�0

0

or    i n
t t

i

t t

t t t dx
dt

( ( ), ( ), , ( )1 2
0

0

� 


 
��
�
�

Using  (4.3) of  1.4 we get
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i n
t t

i

t t

x t x t x t dx
dt

( ( ), ( ), , ( )1 2
0

0

� 


 ���
�
��

Hence they are related by

6.1) dx
dt

x t x t
i

i n  ( ( ), , ( )1
�� 	

Exercises : 1. Find the integral curve of a zero vector.

2. Find the integral curve of the following vector field

i) X x
x

x
x

 1
1

2
2







 on R2

ii) X e
x

x  1

1



 on R

iii) X
x

x
x

 



1

1 2
2( )  on R2

Solution : 2.i) From (6.1) of  1.6, we see that

dx
dt

x
1

1 ,   dx
dt

x
2

2

or
dx
x

dt
1

1  ,  
dx
x

dt
2

2 

Integrating

log x t1   C       , log x t D2    say, where C, D are integrating constant.

When t = 0, if x p1 1 ,  x p2 2 ,  then from

x Cet1   and x Det2 

we find that

p1 = C, p2 = D

Thus  : ,p e p et t1 2
 �  is the integral curve of X passing through the point 1 2( , )p p
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. 1.7 Differential  of a mapping :

Let

f : M   N

be a a differentiable mapping of an n-dimensional manifold M to an m-dimensional manifold N.

Let F(p) denote the set of all differentiable functions at pM and F f p( )
 �  denote the set of all

differentiable functions at f p N( ) .  Such a map f, induces a map

f F f p F p*: ( ) ( )
 � , usually called pull back map.

and is defined by

7.1) f g g f*( ) , �   ( )g F f p

called the pull back of g by f, which satisfies

7.2) f ag bh a f g b f h* * *( ) ( ) ( )  

f gh f g f h* * *( ) ( ) ( ) where  , ( )g h F f p  and , a b R

The map f, also induces a linear mapping

f T Mp* : ( )  ( ) ( )f pT N

such that

7.3)    *
* ( ) ( ) ( )p p pf X g X g f X f g �

called the push forward of X by f. Such f* is also called derived linear map or Jacobian map or
differential map of f on Tp(M)

f
*
   push forward

objects defined
on

objects defined
on

f *   pull back

NM

f

f
*

f
M N

p f p

( )

Tp
(M)

Tf(p)
(N)

�
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Let us write

7.4) f X f Xp f p* * ( )( ) ( )

We can also define push forward of X by f, geometrically, in the following
manner :

Given a differential mapping

f M N: ,

the differential of f at p M  is the linear mapping

f T Mp* : ( )  ( ) ( )f pT N

defined as follows :

For each XpTp (M), we choose a curve ( )t  in M such that Xp is the tangent

vector to the curve ( )t  at p t ( ).0  Then f X p*( )  is defined to be the tangent vector to the

curve f t( )� �  at f p f t( ) ( )  0
 �

Exercises :

1. If f is a differentiable map from a manifold M into another manifold N and g is a differ-
entiable map from N into another manifold L, then, show that

i)   ( )* * *g f g f� �          ii) ( )* * *g f f g� �

2. If f is a transformation of M and g is a differentiable function on M, prove that

i) f X Y f X Y* *[ , ] [ , ]

ii) f f X g X f g*
*

*) ( )� � 

iii) f gX g f f X* *( ) ( )( ) 
�

1

for all vector fields X, Y on M.

Solution : 1. By definition, f X p*( )  is the tangent vector to the curve f t( )
 �  at

f p f t( ) ( )  0
 �  where Xp is the tangent vector to the curve ( )t  at p t ( ).0  Hence by

(4.4) of  1.4
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f gp*( )X�    
d
dt

g f t
t t

( ( )� ��
��

�
��  0

 g F f p ( )
 �

 ���
�
�� 

d
dt

g f t
t t

( ) ( )� � �
0

= Xp ( )g f�  by 4.4) of  1.4

Hints 3. Given that

f : M   M

is a transformation and hence for every pM, f p q( ) ,  say.

Thus, p f q 1( )

consequently, from 7.3) of  1.7, we find that

f X g f pp*( ( )� �� �  X g f pp ( ) ( ),�� �   p M

or f X g q X g f f qp p*( ) ( ) ( ) ( )� �� � � � 
�

1

or f X g X g f f*( ) ( )� � � � 
�

1

Using this relation, one can deduce the three results.

We are now going to give a matrix representation of the linear mapping f*.

Theorem 1 : If f is a mapping from an n-dimensional manifold M to an m-dimensional

manifold N, where ( , , )x xn1
�  is the local co-ordinate system in a neighbourhood of a point p

of M and ( , )y ym1
�  is the local co-ordinate system in a neighbourhood of f p( )  of N, then

f
x

f

x yi
p

j

i pj

m

j
f p

*
( )










�
�
�
� 

�
��

�
��


1

 where f y f
j j �

Proof : We write

f
x

a
yi

p
i
j

j
f pj

m

*
( )

,





�
�
�
� 

�
��

�
��


1

i n,...,
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where a si
j ,  are unknown to be determined

or f
x

y a
y

yi
k

i
j

j
f p

k

j

m

*
( )







�
	


�

���
���  �

	�


�


1

 where each y F f pk  ( ( ))  k m 1,...,

using 7.3) of  1.7, we find





x

y f a
i

p

k
i
j

j
k

j

m�
	


� 


( )�

1

or

x

f ai
p

k
i
k�

�
�
� 

or  


f

x
a

k

i
p

i
k�

��
�
��           by  (4.9) of  1.4

Thus

f
x

f

x yi
p

j

i
p

j
f pj

m

*
( )










�
�
�
� 

�
��

�
��
�
��

�
��


1

Note : 1. The matrix of f*, denoted by (f*) is given by

( )*f

f
x

f
x

f
x

f
x

f
x

f
x

f
x

f
x

f
x

n

n

m m m

n



�

�

�
�
�
�
�

�

�

	
	
	
	
	




























1

1

1

2

1

2

1

1

2

1

1 2

�

�

Note : 2. The kernel of f* is the set of X T Mp p ( )  for which

f X p*( )  

The image of f* is the set of ( ) ( ) ( )f p f pY T N  for which, there exists X T Mp p ( )  such

that

f X Yp f p* ( )( ) 

Now from a known theorem
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dim (kernel f*) + dim (Range f*) = dim Tp(M).

We write it as

7.5) dim (kernel f*) + dim (Range f*) = dim Tp(M) for each p  M

The dim (Range f*) is called the rank f*

If rank f* = dim Tp(M) we say

i) f is an immersion if dim M   dim N and f(M) is an immersed submanifold of N

ii) f is an imbedding if f is one to one and an immersion and then f(M) is an imbedded
submanifold of N

iii) f is a submersion if dim M   dim N.

Exercises : 1. Show that

f R R:  2

given by

f(t) = (a cost, sint)

is an immersion.

2. Find (f*) in the following cases

i) f : R2   R2 given by f = ( ) ( ) ,x x x x1 2 2 2 1 22 3
 �

ii) f : R2   R2 given by f = x e x x e xx x1 2 1 22 2 ,� �  at (0, 0)

where 1 2( , )x x  are the local co-ordinates on R2

. 1.8  f-related vector Field :

Let X and Y be fields on M and N respectively.

Then, for pM, let p pX T (M)  and f (p) f(p)Y T (N)  and such that

8.1) f X Yp f p* ( )( ) 

where f M N:   is a differentiable mapping and f* is already defined in the previous

article. In such a case, we say that the two vector fields X, Y are f-related.
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For g F f p ( )
 �  we see that

f X g Yp f p
g

* ( )( )
 � 

Using 7.3) of  1.7 and (5.1) of  1.5 we find that

X g f Yg f pp ( ) ( ) ( )�  , p

Then

8.2) ( ) ( )X g f Yg f�

If f is a transformation on M and

f X Xp f p* ( )( ) 

we say that, X is f-related to itself or X is invariant under f. We also write it as

8.3) f X X* 

Exercises : 1. Let X Y ii i, ( , ) 1 2  be two f-related vector fields on M and N respectively.

Show that the vector fields [X1, X2] and [Y1, Y2] are also f-related.

2. Prove that two vector fields X, Y respectively on M and N are f-related if and only if

f f X g X f g*
*

*( ) ( )� � 

where f : M   N is a C
  map.

3. If f is a transformation on M, show that, for every X M( ),  there exists a unique f-

related vector field to X.

Solution : 1. From the definition of the Lie bracket, we see that

[ , ]( )X X g f1 2      X X g f X X g f1 2 2 1( ) ( )� � � �

 X Y g f X Y g f1 2 2 1( ) ( )� � � � by (8.2) above

 Y Y g f Y Y g f1 2 2 1( ) { ( )}� � by (8.2) above

 Y Y g Y Y g f1 2 2 1( ) ( )� �
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[ , ]( ) [ , ]X X g f Y Y g f1 2 1 2�  � �  from the definition of the Lie Bracket. Hence from 8.2),

one claims that [X1, X2] and [Y1, Y2] are f-related.

. 1.9  One parameter group of transformations on a manifold :

Definitioin

Let a mapping

 : R M M 

is defined by

 : ( , ) ( )t p pt

which satisfy

i) for each t R ,  ( , ) ( )tt p p    is a transformation on M and 0 ( )p p 

ii) for all t, s, t + s  R

    t s t s t sp p p( ) ( )( ) ( )
 �   �

Then the family  t t R| � �  of mappings is called a one-parameter group of transforma-

tions on M.

Exercise : 1. Let  t t R| � �  be a one-parameter group of mappings on M. Show that

i)  
t t( ) 1

ii)  t t R| � �  form an abelion group.

Let us set

9.1) ( ) ( )t pt 

Then ( )t  is a differentiable curve on M such that

( ) ( )0 0  p p      by Def. (i) above

Such a curve is called the orbit through p of M. The tangent vector, say Xp to the curve

( )t  at p is therefore

9.2) X f d
dt

f tp
t

 �
��

�
�� 

( )� �
0

  
lim ( ) ( )

t
f p f p

t
t

0
� �

,   f F M( )
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In this case, we say that  t t R| � �  induces the vector field X and X is called the generator

of { }. t  The curve ( )t  defined by 9.1) is called the integral curve of X.

Exercises : 2. Show that the mapping

 : R R R 3 3

defined by

( , ) ( , , )t p p t p t p t   1 2 3

is a one-parameter group of transformations on M and the generator is given by








x x x1 2 3 

3. Let  M = R2 and let

 : R M M 

be defined by

 t x y xe yet t, ( , ) ,� � � � 2 3

Show that   defines a one-parameter group of transformation on R2 and find its generator.

Note : Since every 1-parameter group of transformations induces a vector field on M, the
question now arises whether every vector field on M generates one parameter group of trans-
formations. This question has been answered in the negative.

Example : Let

X e
x x

x  1

1 2






on M = R2. Then,

dx
dt

ex
1

1  ,   dx
dt

2
1

Thus e t Ax  1 ,  x t B2   ,  where A, B are integrating constant.

Let x p1 1 ,  x p2 2  for t = 0 Then, A e p  1 ,  B p 2 .
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Consequently the integral curve of X is ( ) log ,t
t e

t p
p




�
�

�
�

1
1

2

which is not defined for all values of t in R. Thus, if  ( ) ( ),t pt  then, X does not

generate one parameter group of transformations.

Problem 7 leads us to the following definition :

Let I  be an open interval ( , )   and U be a nbd of p of M. Let a mapping

 : ( )I U U Mt   

denoted by

 ( , ) ( )t p pt

be such that

i) U is an open set of M

ii) for each t I  , ( , ) ( )t p pt is a transformation of U onto an open set  t U( )  of M

and 0 ( )p p 

iii) if t, s, t + s are in I  and if  s p( )    U

  t s t sp p( ) ( )
 �  

Such a family  t t I|  � �  of mappings is called a local one parameter group of transforma-

tions, defined on I U  .

We are now going to establish the following theorem

Theorem 1 : Let X be a vector field on a manifold M. Then, X generates a local one-
parameter group of transformations in a neighbourhood of a point of M.

Proof : Let ( , ,.... )x x xn1 2  be a local coordinate system in a neighbourhood U of p of M

such that ( ) ( ,..., )p  0 0  Rn ,  where (U,  ) is the chart at p of M. Then

x p u pi i( ) ( )( ) , �  0  i n 1, ...,

Let

X x x
x

i n
i

i

  


( ,..., )1
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be a given vector field on U, the neighbourhood of p  M, where each i, s the components

of X, are differentiable functioins on U of M. Then, for every X on M, we have a  -related

vector field on, n
1(U) U CR   with  (p) = ( ,..., )0 0 n

1U CR .

Let i, s be the components of the  -related vector field on U1 of Rn. Then by the exist-

ence theorem of ordinary differential equations, for each  (p) U1 Rn, there exists a 1 0

and a neighbourhood V1 of  (p), V1   U1 such that, for each q q qn ( ,... )1  V1, q r ( ),

say, there exists n-tuple of C


 functions f t q f t qn1( , ),... ( , )  defined on I1
   I1

 and mapping

f i I: 1
 V1   U1 , i n 1,...,  which satisfies the system of first order differential equations

1) 
df t

dt
t p

i
i( )

, ( ) ,  � �   i n 1,...,

with the initial condition

2) (0, )i if q q

Let us write

3)  t
nq f t q f t q( ) ( , ),..., ( , ) 1
 �

We are going to show

  t s t sq q ( ) ( ) .
 �

Note that if t, s, t + s are in I 1
 and if  s q( )  V1   U1 then each f t s qi ( , ),  f t qi

s, ( )
 �
are defined on I1

 ✕ U1. Now let us set

g t g t f t s q f t s qn n1 1( ),..., ( ) ( , ),... ( , )
 � 
 �  

For simplicity, we write

g t f t s qi i( ) ( , )
 � 
 � 

Then each g ti ( )  is defined on I1
 ✕ U1 and hence satisfies 1) with the initial condition

4) g o f s qi i( ) ( , )
 � 
 �
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Also, let us set

h t h t f t q f t qn
s

n
s

1 1( ),..., ( ) ( , ( ),..., ( , ( )� � � �  

For simplicity, we write

h t f t qi i
s( ) ( , ( )� � � � 

then each h ti ( )  is defined on I1
 ✕ U1 and hence satisfies 1) with the initial condition

h o f o qi i
s( ) , ( )� � � �� � 

 s
i

q( )� �     by 2)

 f s qi ( , )� �   by 3)

 g oi ( )� �      by 4)

Hence from the uniqueness we must have

g t h ti i( ) ( )� � � �

Using 3) we must have

  t s t sq q ( ) ( ) .� �

Thus, we claim that, for every vector field defined in a neighbourhood U1 of  (p) of Rn,

there exists  t t I| 
1

� �  as its local 1-parameter group of transformations defined on I 1
✕U1.

Let us set

V = 1  (V1)   U

and define

 : ( )I V V Mt   

as follows

  t r t q( ) ( , ) 1� �
Then

i)  ( , ) ( )t r rt  is a transformation of V onto  t ( )V  of M
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ii) if t, s, t + s are in I and if  s r( )    V, then

     t s sr t r( ) ( , ( )� � � �� � 1

  1 ( , )t s q� �  , after a few steps

  t s r( )

Thus for the given vector field X, defined in a neighbourhood U of p of M, there exists

 t t I|  � 	  as its local 1-parameter group of transformations, defined on I ✕ V U of M.

Note that if we define

   ( ) ( ) ( , ) ,t r t qt  1� �   q r  ( )

  1 ( ) ,t� �   say,

then  1 ( )t� �  is the integral curve of X.

This completes the proof.

Theorem 2 : Let   be a transformation of M. If a vector field X generates  t  as its local

1-parameter group of transformations, then, the vector field 
*
X  will generate  t 1  as its

local 1-parameter group of transformations.

Proof : Left to the reader.

Exercise : 4. Show that a vector field X on M is invariant under a transformation   on M

if and only if

   � �t t

where  t  is the local 1-parameter group of transformations induced by X.

We now give a geometrical interpretation of [X, Y], for every vector field X, Y on M.

Theorme 3 : If X generates  t  as its local 1-parameter group of transformations, then, for

every vector field Y on M.

[ , ] lim ( )*X Y t t
Y Yq q t q  0

1 � �
 �  where q pt  ( )  and ( ) ( ) ( )* *  t p t tY Y p � �
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To prove the theorem, we require some lemmas which are stated below :

Lemma 1 : If  (t, p) is a function on I  ✕ M, where I   is an open interval ( , )   such

that

 (0, p) = 0 ,      pM

then, there exists a function h (t, p) on I ✕ M such that

t h (t, p) =  (t, p)

Moreover

h (o, p) =  (o, p), Where   d
dt

.

Proof : It is sufficient to define

h t p ts p
d ts

t
( , ) ( , )

( ) �
0

1

Hence by the fundamental theorem of calculus

h t p
t

ts p( , ) ( , ) 
��

�
��

1
0

1



 th t p t p( , ) ( , ) 

Also from above

h o p o p ds( , ) ( , ) �
0

1

       ( , ) [ ] ( , )o p s o p0
1

Lemma 2 : If f is a function on M and X is a vector field on M which induces a local

1-parameter group of transformations  t  then there exists a function gt  defined on I ✕ V , V

being the neighbourhood of p of M, where

g p g t pt ( ) ( , )

such that

f p f p tg pt t ( ) ( ) ( )� �  
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Moreover,

X f g o p g pp  ( , ) ( )0

Symbolically,

Xf g 0  on M.

Proof : Let us set

~
( , ) ( ) ( ) ,f t p f p f pt  � � � �0    pM

Then ~
( , )f t p  is a function on I ✕ M such that

~
( , ) ( ) ( ) ,f o p f p f p   0 0 0� � � �    pM

Hence by Lemma 1, there exists a function, say, g(t, p) on I  ✕ V , VM being the

neighbourhood of p of M, such that

tg t p f t p( , )
~

( , )

 g t p
f p f p

t
t( , )
( ) ( )


 � � � �0

or, g o p t t
f p f p X ft p( , ) lim ( ) ( )   0

1
0 � �� � � �

As,

tg t p f p f pt( , ) ( ) ( ) � �

we find that

f f tgt t�   

Proof of the main theorem :

Let us write

 t p q( ) 

 p q qt t 
 1( ) ( )
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Now,

( ) ( ) ( ) ( ) ( ) ( )* t t tY f q Y f p Y f tg p� �� � � � � �  �  by Lemma 2

or ( )( ) ( ) ( ) ( )( ) ( )( ) ( ) ( )*Yf q Y q Yf q Yf p t Yg qt t t     � �� � � �

or,
lim ( )*t t

Y Y fq t q �
�

�
�0

1 � �� �  
lim ( )( ) ( )( )

t
Yf q Yf p

t0   
lim ( ) ( )t Yg qt t0 � �

= lim ( )( ) ( )( ) ( )( )t t
Yf q Yf p Yg q  0

1
0� �

= lim ( )( ) ( )( ) ( ),t t
Yf q Yf p y Xfq  0

1� �    by Lemma 2

From the definition we find that,

X f t t
f q f qq t  lim ( ) ( )0

1 � �� �

or    X f t t
f p f qq

lim ( ) ( )0
1 � �

Taking f Yf ,  we find from above after a few steps

X Yf t t
Yf q Yf pq ( ) lim ( )( ) ( )( )  0

1 � �

Thus we write,

lim ( )*t t
Y Y fq t q �

�
�
�0

1 � �� �  X Yf Y Xfq q( ) ( )  [ . ] ( ),X Y f q� �  after a few steps.

[ , ] lim ( )*X Y t t
Y Yq q t q  0

1 � �
 �

Note : We abbreviate the above result as

[ , ] lim ( )*X Y t t
Y Yt  0

1 � �� �

Corollary : 1. Show that

  s s s tX Y t t
Y Y� � � � � �� �* * *[ , ] lim ( )   0

1
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Proof : From the last theorem

s X Y t t
� �*[ , ] lim  0

1   s s tY Y� � � �� 	* * *
( ) ,  as s� �*  is a linear mapping

lim ( )* *t t
Y Ys s t 0

1   � � � �� �� , from a known result

Using the definition of local 1-parameter group of transformations, the result follows immedi-
ately.

Corollary 2 : Show that

( ) [ . ]
( )

*
*


s

t

t s

X Y
d Y

dt
 


��

�
� 

� �

Proof : Left to the reader

Corollary 3 : Let X, Y generate  t  and  s  respectively, as its local 1-parameter group of

transformations. Then

   t s s t� �

if and only if [X, Y].

Proof : Let

   t s s t� �

Then from Exercise 4, the vector field Y is invariant under  t . Hence by  1.8

( )*t Y Y

Consequently from Theorem 3, [X, Y] = 0

Converse result follows from corollary 2.

A vector field X on a manifold M is said to be complete if it induces a one param-
eter group of transformations on M.

Theorem 4 : Every vector field on a compact manifold M is complete.

Proof : Let X be a given vector field on M. Then by Theorem 1, X induces { }t  as its
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local 1-parameter group of transformations in a neighbourhood U of p of M and t  I     R. If
p runs over M, then for each p, we get a neighbourhood U(p) and I  (p), where all such U(p)
from an open coverings of M. Since M is compact, every open covering {U(p)} of M has a

finite subcovering { ( ) : , ..., }U p i ni  1  say. If we let

   min ( ), ( ), ..., ( )p p pn1 2� 	

then, there is a t such that for | |t  

 t p( ) : ( , )   x M   M

is local 1-parameter group of transformations on M. We are left to prove that  t p( ) is defined

on R ✕ M.

Case a) : t  

We write

t k r  
2

, | | ,r  
2

 k being integer

Then  t k r
 

2

  
k r

2

�

2 2 2

..... r      � �

          k times

Similarly for t   , we can show that

       t r   
2 2

........

Thus  t  is a local 1-parameter group of transformations on M.

Combining all the cases, we claim that  t  is defined on R ✕ M. Hence X induces  t  as its

1-parameter group of transformations on a compact manifold M. Thus X is a complete vector
field.



45

 1.10  Cotangent Space :

Note that  (M) is a vector space over the field of real numbers. A mapping

 :  (M)   F(M)

that satisfies

(X+Y) = (X) + (Y)

(bX) = b (X),  b  R and for all X, Y  X(M),

is a linear mapping over R.

The linear mapping

 :  (M)   F(M)

denoted by

 : X   (X)

is called a 1-form on M.

Let

D M M F M1� � � � � �� �    , , ... :

be the set of all 1-forms on M. Let us define

10.1)  
   

 

  



�
��
 �
� � � � � �
� � � � � �

X X X

b X b X

( )

It can be shown that D1 (M) is a vector space over R, called the dual of   ).

For every pM,  X F M� � � �  is a mapping

 X M R� � :   defined by

10.2)  X p Xp p� �� � � � ! "
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so that

 p pT M R: � �

Thus  p  dual of T Mp� � . We write the dual of T Mp� �  by T Mp
*� �  and is the cotangent

space of T Mp� � . Elements of T Mp
*� �  are called the covectors at p of M or linear functionals on

T Mp� � .

For every f F(M), we denote the total differential of f by df and is defined as

10.3)  df X Xf p X f pp p p� � � � � �� �  ,

We also write it as

10.4)  (df) (X) = Xf

Exercises : 1.  Show that for every fF(M), df is a 1-form on M.

2. If x x xn1 2, , .... ,� 	  are coordinate functions defined in a neighbourhood U of p  M,

show that each dx i ni , , .... ,1  is a 1-form on U   M.

Solution : 2   Note that

dx X Y X Y xi i� � � � � �   ,  (10.4)  above

 Xx Yxi i

                     dx X dx Yi i� �� � � �� � ,   by (10.4)

Similarly it can be shown that

                    dx bX b dx Xi i� �� � � �� �

Thus each dx i ni , , .... , 1  is a 1-form on R.

From Exercise 2 above, it is evident that each  *( )i
p pdx T M , for i =1, ....., n. We

now define
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10.5)   dx
x

i
p i

p
j
i� � 


�

�
�
� 

Let  p pT M *� �  be such that

10.6)  

p j

p
j px

f


��

�
�  � �  where each f Rj p

� � 

If possible, let  p pT M *� �  be such that

 p p p n p
n

p
f dx f dx  1

1� � � � � � � �.......

then

 
p

p
p n p

n
px

f dx f dx1 1
1


�
�
   � �� �( ) ( ) ( )�  

x
f

p
p1 1

�
�

�
	  ( )   by (10.5)

Proceeding in this manner we will find that

 


 
p

p
p p ix

f
x1 1

�
�

�
	   �

�
�
	� �  by (10.6)

As 
x

i n
i

: ,..., 1� �  are linearly independent, we must have

 p p .

Thus any  p T p
* (M) can be expressed uniquely as

10.7)  p i p
i

pf dx  ( ) ( )

 T p
* (M) = span ( ) , ..., ( )dx dxp

n
n

1
 �

Finally if

( ) ( ) ,f dxi p
i

p
i

 0  then,
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( )f dx
xi p

i
p k

pi
�  


�
�

�
�  0

i.e. f k p� �  0.  by (10.5)

Similarly it can be shown that

f f
p n p1 0� � � �  .....

Thus the set f f
p n p1 0� � � �  ...  is linearly independent and we state

Theorem 1 : If x xn1, ,....� �  are local coordinate system in a neighbourhood U of p of M,

then the linear functionals {( ) : ,...., }dx ni
p 1  on Tp(M) form a basis of T (M).p

*

Note that

( )( )dX Xi  Xxi   by   10.4)

=  


j
j

i
x

x  by  5.2) of  1.5

10.8) ( )( )dx Xi i 

Thus, one can find

( )( ) ( )df X Xf
x

f
f
x

dx Xi
i i

i    





 from above

Hence we write

10.9) df = 



f

x
dx

i
i

For every   D1 (M), we define f   to be a 1 form in M and write

10.10) ( )( ) ( )f X f X  � �

Note : D1(M) is a F(M)-module
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.  1.11 r-form, Exterior Product :

An r-form is a skew-symmetric mapping

  : ( ) ........ ( ) ( )M M F M  

such that

i) w is R-linear

ii) if   is a permutation of 1,2......r with

(1, 2, ......., r)   ( ), ( ), ... ( )1 2 r� �  then

11.1)   


  X X X r X X Xr r1 2 1 2
1

, , ( ) ( ) ( )......,
!

(sgn ) ( , , ...... )� �    where (sgn )  is + 1

or –1 according as   is even or odd permutation .

If   is  a r-form and   is a s-form, then, the exterior product or wedge product of   and

  denoted by    is a (r+s)-form. defined as

11.2 ( )( , ,...... , ), ......  X X X X Xr r s1 2 1

= 
1

1 1( )!
(sgn ) ( ,..., ) ( ,....... )( ) ( ) ( ) ( )r s

X X X Xr r r s        


where   ranges over the permutation (1, 2,......r+s), X M i r si   ( ). , , ......,1 2

For convenience, we write

11.3) f g fg  ,  f g F M, ( ).

It can be shown that, if  is a r-form

11.4) ( )( ,..., ) ( , , ... , )f X X f X X Xr r  1 1 2

( )( ,..., ) ( , ..., )  f X X f X Xr r1 1

Again, if  and   are 1-forms, then

11.5) ( )( , ) ( ) ( ) ( ) ( )       X X X X X Xr1 1 2 2 1
1
2
� �

�
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The exterior product obeys the following properties :

11.6)        ,      0

f f f         ( )

f g fg           ,        1� �rs
,   : r - form   : s - form

( )           

Exercises : 1. If   is a 1-form and   is a 2-form, show that

( )( , , )  X X X1 2 3
1
3

     ( ) ( , ) ( ) ( , ) ( ) ( , )X X X X X X X X X1 2 3 2 3 1 3 1 2 � �

2. Compute

i) ( ) ( )2 1 2 1 2du du du du  

ii) ( ) ( )6 271 2 1 3 1 2 3du du du du du du du     

Solution : 2 i) ( ) ( )2 1 2 1 2du du du du  

     2 1 1 2 2 1 2du du du du du du( ) ( )

    2 1 2 2 1du du du du  as du dui i  0

=  3 1 2du du    by  11.6)

Theorem 1 : In terms of a local coordinate system ( , , ..., )x x xn1 2  in a neighbourhood U

of p of M, an r-form   can be expressed uniquely as

11.7)    
  
 f dx dx dxi i i

i

i i i

i i
r

r

r
1 2

1

1 2

2
...

...

...  where f i i ir1 2 ...  are differentiable functions

on M.

Proof : Let Dr(M) denote the set of all differentiable r-forms on M. In terms of a local co-

ordinate system ( , , ..., )x x xn1 2  in a neighbourhood U of p of M, the set

dx dx i i i ni i
r

r1 1 1 2      ... : ...� �  form a basis of Dr(M). Using 11.2) we find

i) ( ... )dx dxi ir1    ( , , ..., )X X Xr1 2  1
r!

 (sgn ) ...( ) 


dx Xi1 1� � dx Xi
rr ( )� �

i i ir1 2  ...

�
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where   ranges over the permutation (1, 2, ..., r) and each Xi  (M).

Let

ii) Xk =  
k

j
j

j

n
m

m
m

x


1

where  ’s are functions, called the components of X k .

Using ii), we get from i)

dx dx X Xi i
rr1 1 ..... ( ,..., )� 	  1

r!  (sgn ) ...( ) ( )  


 


   

�

�




�

�
dx

x
dx

x
i j

jm
ir

r
j

jk
m k1 1

Using (10.5) of  1.10, we get from above

iii) ( ... )dx dxi ir1   ( , , ..., )X X Xr1 2  1
r!

(sgn )

   ( ) ( )...1

1i
r

ir i i ir1 2  ...

Using ii) in (11.1) of  1.11,  , we find

 ( , ..., )X X Xr1 2  1
r!

(sgn )

   


 

 ( ) ( ), ...,1
j

j r
j

j
m

m

s

sx x
��

�
	

As each   is R-linear, we find from above

 1
r!

(sgn )

    




 ( )
,...,

( )... , ... ,1
j

j j
r

j
jm j s

m

m s

s

x x
 �

��
�
	�

Changing the dummy indices j i j im s r 1 , ...,  we get

 1
r!

(sgn )

    



 ( )

,...,
( )... , ... ,1

1

1
1 1

i

i i
r

i
i i

r

r

x x
 �

�
�
	

Using iii) we find from above

  

  

 ( ... ) ( , ..., )
,...

...

...dx dx X X X fi

i i
i i i

i
r i i i

r

r

r
r

1

1

1 2

1 21 2
  

,  where

 



x x

f
i i ri i i1 1 1 2

, ... , ...
�
�

�
� 

i i ir1 2  ...
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Thus

( , ..., )X X Xr1 2   

  

 f dx dx X Xi i i
i

i i
i i i

i
rr

r

r

r
1 2

1

1

1 2

1...
,...

...

( ... ) ( ,..., ),
  X Xr1,...,

Hence we can write

    
  
 f dx dx dxi i i

i i i

i i i
r

r

r
1 2

1 2

1 2...
...

...

This completes the proof.

Exercises : 3. Show that a set of 1-forms { , ,..., }  1 2 k  is linearly dependent if and

only if

  1 2 0   � k

4. Let { , ,..., }  1 2 k  be k-independent 1-forms on M. If  i  be k 1-forms satisfying

 i i
i

  0

show that

 i ij jA   with A Aij ji

Solution : 3. Let the given set of 1-forms be linearly dependent. Hence any one of them,

say,  k 1  can be expressed as a linear combination of the rest i.e.

  k b b    1 1 1 2 2 � b bk k k k  2 2  ,  where each b Ri 

    1 2 1   � k k

               1 2 1 1 2 2 2 2� ( ..... )b b b bk k k k k

 b1 1   2 �      1 1 2      k k k kb� �

= 0 by 11.6) of this article.

Converse follows easily.

4. As { , ..., } 1 k  is a independent set of of 1-forms, we complete the basis of D1 (M)

by taking 1-forms  k n1, ..., .  Thus the basis of D1 (M) is given by { , ..., , , ..., }.   1 1k k n

Consequently any 1-from  i , i k 1,...  can be expressed as
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i)   i im m ip p
p k

n

m

k

A B 
 
 ,

11
 i k 1 2, , ...

Given that

 i i
i

  0

i.e.      1 1 2 2 0      � k k

Using i) and 11.6) one gets after a few steps

( )A Aij ji i j
i j k

 
 
     




Bji i j
i k
j k

  0

As  ’s are given to be linearly independent, so we must have

A Aij ji  0  and  Bij  0

i.e. A Aij ji

Consequently i) reduces to

 i ij jA   with A Aij ji

. 1.12. Exterior Differentiation :

The exterior derivative, denoted by d on D is defined as follows :

i) d (Dr)   Dr+1

ii) for f  D0 , df  is the total differential

iii) if  Dr ,   Ds  then

d d dr( ) ( )          1

iv) d2 = 0

From 11.7) of  1.11 we find that

12.1)  1

1 2

1 r
r

r

ii
i i

i i i

d df dx dx
  

     �

�

�
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Exercises : 1. Find the exterior differential of

i) x y dy xy dx2 2

ii) cos( )xy dx dz2 

iii) x dy dz y dz dx z dx dy    

2. Find the exterior differential of

d d     

A form   is said to be closed if

12.2) d  0

If   is a r–form and

12.3) d 

for some (r–1) form   then,  is said to be an exact form.

Exercise : 3. Test whether   is closed or not where

i)    �
�

�
�xy dx x y dy1

2
2

ii)   e y dx e y dyx xcos sin

Theorem 1 : If   is a 1-form, then

d X X( , )1 2  1
2 1 2 2 1 1 2X X X X X X  ( ) ( ) [ ,� � � � � �� � 

Proof : Without any loss of generality, one may take an 1-form as

  f dg f g, ,  F(M)

 d X X df dg X X( , ) ( )( , )1 2 1 2 

Using  11.5) of  1.11, we find

d X X( , )1 2  1
2 1 2 2 1( ) ( ) ( ) ( ) ( ) ( ) ( )df X dg X df X dg X� �
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Using  (10.4) of  1.10, we get

d X X( , )1 2  1
2 1 2 2 1( )( ) ( )( )X f X g X f X g� �

   1
2 1 2 1 2 2 1 2 1X f X g f X X g X f X g f X X g( ( ) ( ( )� � � � � � � �� �  on

using (4.6) of  1.4

Now ( ) ( )( ) ( ) ,X fdg X f dg X1 1 1  � �  as ( )( ) ( )f X f X  
 �

 f X g( )1 by  (10.4)  of  1.10

by ( ) ( )X f X g2 2

Thus we get from above

d X X X X X X f X X g X X g  ( , ) ( ( ( ) ( )1 2 1 2 2 1 1 2 2 1
1
2

   � � � � � �

  1
2 1 2 2 1 1 2X X X X f X X g ( ( [ , ]� � � � � �� �

 d X X( , )1 2
1
2

 X X X X X X1 2 2 1 1 2  ( ) ( ) [ , ]� � � � � �� � 

This completes the proof.

Existence and Uniqueness of Exterior Differentiation :

Without any loss of generality we may take an r-form as

   f dx dxi i i
i i

r
r

1 2
1

... ... ,   fi ir1 ... F(M)

Let us define an R-linear map

d : D   D as

12.4) d dfi i ir
 

1 2 ...   dx dxi ir1  ....

Clearly i) d (Dr)   Dr+1   and

ii) if   is a 0-form, then d  is the total differential of  .

iii) Let   Ds and it is enough to consider
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   g dx dxj j
j j

s
s

1
1

... ... , g j js1 ...  F(M)

then d d f g dx dx dx dxi i i j j
i i j j

r s
r s( ) ... ...... ...       

1 2 1
1 1� �

Using 12.1 we get

d d f g dx dx dxi i j j
l j j

s s

i s      � � ( ) ........... ....1 1

1

= ( ) .... .......... .... .... ...g df f dg dx dx dx dxj j i i i i j j
i j ji j

s r r s
r s

1 1 1 1
1      

= g df dx dx dxj j i i
i j j

s r
r s

1 1
1... ... ...     f dg dx dx dx dxi i j j

i i j j
r s

r s
1 1

1 1... ... ... ...     

= df dx dx g dx dx f dx dx dgi i
i i

j j
j j r

i i
i i

j jr
r

i s
s

r
r

s1
1 1

1
1

1
1..... ..... ....... .......... ( ) ......        

 dx dxj ji s

= d dr      ( )1

iv) Again using (10.9) of  1.10 in (12.4) we see that

d
f

x
dx dx dx

i
i i i

i k

k r

k

 


    1 .....

or d d d
f

x x
dx dx dx dx

i i
i i i i

ii s k

s k r

ks

( ) ..... 
 

    
2

1

= 0,

If i is k , then, dx dxi is k =0

Thus existence of such d is established.

It is easy to establish the uniqueness of d.

Thus there exist a unique exterior differentiation on D.

. 1.13 Pull-back Differential Form :

Let M be an n-dimensional and N be an m-dimensional manifold and

f M N: 
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be a differentiable mapping. Let T
p
(M) be the tangent space at p of M where ( ) ( )*

f pT N  is its

dual. Let ( ) ( )f pT N  be the tangent space at f(p) of N where ( ) ( )*
f pT N  is its dual. If (x1,....xn)

and (y1,....ym) are the local corrdinate system at p of M and at f(p) of N respectively, then, it is

known that { : 1, ....., } { : 1, ....., }
i j

i n and j m
x y

  
 

 are respectively the basis of Tp(M) and

( ) ( )f pT N . Consequently {dxi : i=1,...n} and {dyj : j = 1, ...., m} are the basis of Tp
* (M)

and ( ) ( )*
f pT N  respectively.

Let   be a 1-form on N. We define an 1-form on M, called the pull-back 1 form of   on M,

denoted by f * , as follows

13.1)  * *
( ) ( ) *{ ( )}( ) ( ) ( ( ),f p p p f p pp

f X f X f X       p of M.

where f
*
, f*are already defined in  1.7

So, we write

13.2) f ff p p
*

( )
*( ) ( ) 

then, by 7.4) of  1.7, we get from 13.1, on using 13.2)

13.3)  ( ) ( ) ( )*
( ) * ( ),f X f X p of Mp p f p f p  

Therefore we may write, for a 1 form  on N and a vector field X on M by

13.4) ( )( ) ( )*
*f X f X 

Theorem 1 : If  f is a mapping from an n-dimensional manifold M to an m-dimensional

manifold N, where ( , ,.... )x x xn1 2 is the local coordimate system in a neighbourhood of a point p

of M and ( .... )y ym1  is the local coordinate system in a neighbourhood of f(p) of N, then

f dy
f

x
dxi

f p

j

i p
i

p
i

n
*

( )( ) ( ) ( )

 

1
    where  f y fj j . , i m 1,....

Proof : Since *
( )( )i

f pf dy  is a co-vector at P on M, it can be expressed as the linear

combination of the basis co-vectors ( )i
pdx  at P and we take

f dy a dxj
f p i

j i
p

i

n
*

( )( ) ( )



1
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Where ai
j ’s are unknown s to be determined

or { ( ) } ( )*
( )f dy

x
p a dx

x
pj

f p k i
j

i

i
p k







�
�

�
	  �

�
�
	

usinng 10.5 of  1.10 we find that

 *
( )( )

      
j ji i

f p i k kk
p

f dy a a
x

 for ( )
i

i
p k k

p

x
dx

x k

      
 i

k

By (13.1). one reduces to

dy f
x

aj
f p k

p
k
j
 �

( ) *


�
�

�
�

�
�
��

�
��
��


using Theorem 1 of  1.7 we find

dy
f
x y

aj

j i

m

f p

s

k
p

s
f p

k
j� �


 �

��
�
	�
�
��

�
	� 

( ) ( )







Using (10.5) of  (1.10) we find



f

x
a

j

k
p

k
j�

��
�
�	



Thus we get

f dy
f

x
dxj

f p

j

k
p

i
p

i

n
*

( )( ) 
�
��

�
�	

 



 �
1

     , j m 1, ... , ;  f y fj j �

Note : 1. Using (10.9) of  1.10, one find from above theorem

13.5) f dy df j mj
f p

j
p

*
( )( ) ( ) , ,....  1

we can also write it as

13.6) f dy df d y fj
f p

j j*
( )( ) .  
 �
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2. If   is a 1-form, then, its pull-back 1-form f *  is given by

13.7) f dfj
j

j

*   , where   j are the components of 

(Prove it.)

Exercises : 1 If  f M R:  3  be such that

f u u u a( , ) ( cos , sin , )     where

x u x u x a1 2 3  cos , sin ,  

then for a given 1-form  ,    x dx dx x dx on R1 1 2 2 3 3,  compute f * .

2. If f M R:  3  be such that

f u a u Sin a Sinu Sin a Cos, cos , ,   
 � 
 �  then for a given 1-form 

   dx adx dx1 2 3  on R3 , determine f * .

3. Let   be the 1-form in R o o2  ,� �  by

  





y

x y
dx x

x y
dy

2 2 2 2
.

Let U be the set in the plane ( , )r   given by

U r   0 0 2;  � 

and let f : U R2 be the map f r( , )  x r Cos ,  compute f *

y r Sin 

Let us now suppose that   be a r-form on N. In the same manner, as defined earlier, we

define an r-form on M, called the pull-back r-form on M, denoted by f * , as follows :

13.8) f X Xf p p r p
*

( ) ( ) , ... , ( )� �� �� �1   f p p r pf X f X( ) * *( ) , ... , ( ) ,1� � p

�
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We also write it as

13.9) ( )( ... , ) ( , ... , )*
* *f X X f X f Xr r 1 1

Proposition : 1. Let

f : Mn   Nm

be a map,   and   be r-forms on N and g be a 0-form on N. Then

a) f f f* * *( )     

b) f g f g f* * *( ) ( ) 

Proof : a) As   and   are r-forms on N, ( )   is also so. Hence

f X X Xf p r
*

( )( ) ( , ... , ) � � 1 2  ( ) ( , ... , )( ) * *  f p rf X f X1

  f p r f p rf X f X f X f X( ) * * ( ) * *( , ... , ) ( , ... , )1 1

 f X X f X Xf p r f p r
*

( )
*

( ), ... , , ... , � �� �� � � �� �� �1 1  by 13.8)

 f f ff p f p f p
*

( )
*

( )
*

( )( ) ( ) ( ) ,         f p( )

Hence

f f f* * *( )     

b) Note that if   is a r-form and g is a o-form, then g  is again a r-form. Using (13.8)

one gets

f g X Xf p r
*

( )( ) ( , ... , )� � 1  ( ) ( , , ... , )( ) * *g f X f X f Xf p r 1 2 2

 g fp f p( ) ( )� � ( , , ... , )* * *f X f X f Xr1 2

 ( )( ) ( , , ... , )( ) * * *g f p f X f X f Xf p r� � � 1 2

 ( )( ) ( , ... , )( ) * *g f p f X f Xf p r�  1

 f g p f f X f Xf p r
*

* ( ) * *( )( )( ( , ... , )� � 1
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or f g f g p ff p f p
*

( )
* *

( )( ) ( )( ) ( ) � � � �

or f g f g p f
p p

* * *( ) ( ) ( ) ( ) , � � � � � � p

Hence f g f g f* * *( ) ( ) ( ). 

Exercises : 4. Show that

f f f* * *( )     

5. Prove that

( ) ( )* * *f h h f�  

Note : From Theorem 1 of  1.11, we see that, any r-form   can be expressed as

   
  
 g dx dxi i i r

i i

i i i

r

r

1 2
1

1 2

...
...

...

where gi i i r1 2 ...  are differentiable functions on N. Then

f f g dx dxi i i r
i i

i i i

r

r

* *
...

...

...   
  


1 2
1

1 2

� �

   f g f dx f dxi i i r
i ir*

...
* *...

1 2
1   by the Proposition 1(b) and Exercise 4 above

   g f f dx f dxi i
i i

r
r

1
1

...
* *...�� �

Using 13.5) of  1.13 we see that

13.10) f g f df dfi i
i i i

i i
r

r

r*
...

...

...   
  


1

1 2

1�� �

Exercise : 7. Let M be a circle and M  be R2 so that

f M M:  

be defined by

x r x r1 2 cos , sin 
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If   a dx bdx1 2  and   1 11 2

a
dx

b
dx ,  find f * ( ) 

Solution : In this case,

   1 2 1 2
1 1   a b
a b

, , ,

df dr r d1  cos sin  

df dr r d2  sin cos  

 f a dr r d b dr r d* (cos sin ) (sin cos )         

   ( cos sin ) ( cos )a b dr br ar sin d    

and f *    1 1
a

dr r d
b

dr r d(cos sin ) (sin cos )     

 �
�

�
	  �

�
�
	

1 1
a b

dr r
b

r
a

dcos sin cos sin    

Using Exercise 5, one finds that

f * ( )   f f* * 

   a b Sin dr b r a r dcos cos sin    � � � �� �

 �
�

�
	  �

�
�
	


��
��

1 1
a b

dr r
b

r
a

dcos sin cos sin    

  �
�

�
	  ( cos sin ) cos sina b r

b
r
a

dr d    

  �
�

�
	 b r a r

a b
d drcos sin cos sin    � � 1 1

 �
�

�
	 r a

b
b
a

dr d  where d dr dr d     .

Theorem 2 : For any form  ,

d f f d( ) ( )* * 
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where the symbols have their usual meanings.

Proof : We shall consider the following cases.

i)   is a o-form

ii)   is a r-form

Case i) : In this case, let   h,  where h is a differentiable function

Then f dh X*( ) ( )� �  dh f X( )*

 ( )*f X h  by (10.4) of  1.10

= X h f( )�  by (7.3) of  1.7

= d h f X( )( )�  by (10.4) of  1.10

= d f h X( ) ( )*� �  by (10.4) of  1.10

or f dh d f h* *( ) ( )

The result is true in this case.

Case ii) : In this case, we assume that the result is true for ( )r 1  form. Without any loss

of generality, we may take an r-form   as

   g dx dxi i i
i i

r
r

1 2
1

... ...

or f f g dx dxi i
i i

r
r* *

... ...   
1

1� �

  f g dx dxi i
i i

r
r*

... ...
1

1� �

   f g dx dx f dxi i
i i i

r
r r*

...
*... ( )

1
1 1� �

or d f( )*    d f g dx dx f dxi i
i i i

r
r r*

...
*... ( )

1
1 1� �� �

Using (12.1) of  1.12 we find that

d f( )*    d f g dx dx f dxi i
i i i

r
r r*

...
*... ( )

1
1 1� �� � +
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     ( ) ... ( )*
...

*1 1
1

1 1r
i i

i i if g dx dx d f dx
r

r r� � 
 �

Note that dxir  is a 1-form and hence the theorem is true in this case. Thus

d f dx f d dxi ir r* *( ) ( )
 � 
 �  0  by (12.1) of  1.12

Hence

d f( )*    d f g dx dx f dxi i
i i i

r
r r*

...
*... ( )

1
1 1� �� �

   f d g dx dx f dxi i
i i i

r
r r*

...
*... ( )

1
1 1� �� �  , as

the result is true for ( )r 1  form

    f dg dx dxi i
i i

r
r*

... ...
1

1 1� �� �  f dxir* ( )   by  (12.1) of  1.12

    f dg dx dx dxi i
i i i

r
r r*

... ...
1

1 1� �  by known result

Thus d f f d( ) ( )* * 

and hence the result is true for r-form also.

Combining we claim that

d f f d( ) ( )* * 

i.e. d  and f  commute each other.
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UNIT - 2

. 2.1 Lie group, Left translation, Right translation :

Let G be a differentiable manifold. If G is a group and if the map

( , )g g g1 1 2g2 

from G ✕ G to G and the map

g g 1

from G to G are both differentiable, then G is called a Lie group.

Exmaple : Let GL(n, R) denote the set of all nonsingular n ✕ n matrices over real num-
bers. GL(n, R) is a group under matrix multiplication. Define

 ( ) ( , , ... , ; , , ... , ; ... ; , , ... , )A  a a a a a a a a an n n n nn11 12 1 21 22 2 1 2

then

 : ( , )GL n R Rn 2

is a mapping of class C
 . Hence GL(n, R) is a Lie group.

Note : Lie groups are the fundamental building blocks for gauge theories.

For every a  G, a mapping

La : G   G

defined by

2.1) L x axa  ,    x G

is called a Left translation on G.

Similarly, a mapping

Ra : G   G

defined by

2.2) R x xaa  ,    x G

is called a right translation on G.
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Note that

L L x L bx abxa b a ( )  and L x abxab 

 La La = Lab

R R xa b  R bx xbaa ( )   and R x xbaab 

 R R Ra b ba

L R x L xb axba b a ( )  and R L x R ax axbb a b ( )

 L R R La b b a

Thus

2.3) L L La b ab ,  R R Ra b ba ,  L R R La b b a

Again

L L x L ax bax abx L L xb a b a b   ( ) ,  Thus

2.4) L L L Lb a a b ,  unless G is commutative

Taking b a 1 in 2.3) we find

L L La a aa 1 1  by 2.3)

 Le

Thus

2.5) L La a  
1

1( )

It is evident that, for every a  G, each La and Ra are diffeomorphism on G.

Exercise : 1 Show that the set of all left (right) translation on G form a group.

2. Let  : G G1 2  be a homeomorphism of a Lie group G1 to another Lie group G2.

Show that

i)  � �L La a ( )

ii)  � �L Rb b ( ) ,      a b,  in G.
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3. Let   be a 1-1 non-identity map from G to G. If

 � �L Lg g

is satisfied for all g  G, then there is a h  G such that   Rh .

Solution : 2. From the definition of group homeomorphism of a Lie group G1 to another
Lie group G2,

  ( ) ( ) ( ) ,ab a b   a b,  in G1

i) ( ) ( ) ( ) ( ) ( )    � L x L x ax a xa a    L x L xa a  ( ) ( )( ) ( ) ,�    x  in G1

  � �L La a ( )

Similarly ii) can be proved.

3. As G is a group, e  G (identity). Further   is a 1–1 map from G to G, so for e  G, there

is h in G such that

( )e h

Note that

( ) ,e e  because,   is not an identity map.

Now for g   G,

g ge

  ( ) ( )g ge

 ( )L eg

 ( )( ) � L eg

 ( )( ),L eg �  as given

 Lg e( )� �
= Lgh

= gh

= Rhg

   R gh ,



68

. 2.2. Invariant Vector Field :

We have already defined a vector field to be invariant under a transformation in  1.8.

Note that, in a Lie group G, for every a, b in G, each La , Rb is a transformation on G. Thus we
can define invariant vector field under La , Rb.

A vector field X on a Lie group G is called a left invariant vector field on G if

2.6) ( ) ,* ( )L X Xa p L pa
    p  G  ,  where ( )*La  is the differential of La.

Thus from  1.7

( )* ( ) ( )L X Xa p L p L p
a

a
� � 

We write it as

2.7) ( )*L X Xa 

Similarly for a right invariant vector field, write

2.8) ( )*R X Xa 

From  1.7) we know that

( ) ( )*L X g X g La p p a� �  �

or ( ) ( )* ( )
L X g X g La p L p p a

a

� �  �

If L p qa ( )   then p L q L q a qa a   
( ) 1 1

1

Thus the above relation reduces to

2.9) ( ) ( )*L X g X g La q a q a� �  1 �

Let g be the set of all left invariant vector field on G.

If X, Y,  g,  a, b  R, then

2.10) ( ) ( )*L aX bYp   a L X b L Yp p( ) ( )* *  aX bY , ( )*Lp  being linear explained in

Unit 1.

2.11) ( ) [ , ] ( ) , ( )* * *L X Y L X L Yp a p , see  1.7 = [X, Y]
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Thus aX bY g   and [ , ] .X Y g  Consequently g is a vector space over R and also a Lie-

algebra. The Lie algebra formed by the set of all left invariant vector fields on G is called the
Lie algebra of the Lie group G.

Note that every left invariant vector field is a vector field i.e.

g G ( )

where ( )G  denotes the set of all vector field on G. The converse is not necessarily true.

The converse will be true if a condition is satisfied by a vector field. The following theorem
states such condition.

Theorem 1 : A vector field X on a Lie group G is left invariant if and only if for every

f F G ( )

2.12) ( ) ( )Xf L X f La a� �

Proof : Let X be a left invariant vector field on a Lie group G. Then for every f F G ( ) ,

we have from (2.6)

( )* ( )L X f X fa p L pa
� � 

or X f L Xf L pp a a( ) ( ) ( )�     by Q 1.7

or X f L p Xf L pa a( ) ( ) ( )( )� �� 	    ,  p G

 Xf L X f La a� � ( )

Conversely let (2.12) be true. Reversing the steps one gets the desired result.

Note : i) The behaviour of a Lie group is determined largely by its behaviour in the
neighbourhood of the identity element e of G. The behaviour can be represented by an alge-
braic structure on the tangent space of e, called the Lie algebra of the group.

ii) Note that, two vector spaces U and V are said to be isomorphic, if a mapping

f : U   V

is i) linear and  ii) has an inverse f 1  : V   U

Theorem 2 : As a vector space, the Lie subalgebra g of the Lie group G is isomorphic to
the tangent space Te(G) at the identity element e  G.
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Proof : Let us define a mapping

 : g Te  (G)  by

i) ( )X Xe

Note that, for every X, Y in g, X Y g   and

( ) ( )X Y X Y e     by  i)

 X Ye e

  ( ) ( )X Y

Also for b R ,  bX g  and

( ) ( )bX bX e by  i)

 bXe

 bX by  i)

Thus   is linear.

We choose X T Ga a ( )  such that

ii) ( ) ,*L V Xa e a   ,  Where V T Ge e ( ) .

Then ( )*L Xs s a1   ( ) ( )* *L Ls s a e1 V  from above

 L Ls s a e� 1� �* V  from  1.7

 L ass e1� �* V   by  (2.3)

 ( )*La eV

 Xa    , as chosen

or ( )* ( ) ( )L X Xs L s a L s a
s s

� �  1 1 by Q 1.7

or ( )*L X Xs 

 X g

We define

 1 : T (G)e g by
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iii)  1(V )e X

Then ( ) ( ) ( )      1 1V V X Xe e e
 �  ii), where ( )*Le  is the identity differential on G.

or ( ) 1 V Ve e

Further, ( ) ( ) ( ),       1 1 1X X Xe� �  by  i)

  1 ( )*L Ve e� �   by ii)

  1( )Ve

 X   by  iii)

Thus an inverse mapping exists and we claim that

g  T (G)e

Exercises : 1. If, X, Y are left invariant vector fields, show that [X, Y] is also so.

2. If c i j k nij
k ( , , , , ... , ) 1 2  are structure constants on a Lie group G with respect to

the basis X X Xn1 2, , ... ,� 	  of g, show that

i) c cij
k

ji
k 

ii) c c c c c cij
k

ks
t

js
k

ki
t

si
k

kj
t   0

Solution : 1. From Q 1.7), we see that

( ) [ , ]*L X Y fa� 	  [ , ]( )X Y f La�

 X Y f L Y X f La a( ( ,� �� � � �  from the definition of Lie Bracket

 X L Y f Y L X fa a( ) ( )* *� ��  � ��      by  1.7

 X Yf Y Xf( ) ( )  by (2.7)

 [ , ]X Y f  from the definition of Lie Bracket
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 ( ) [ , ] [ , ],*L X Y X Y fa  

Using (2.7), we see that [X, Y] is a left invariant vector field.

2. Using problem 1 above, we see that every [ , ]X X gi j   as X gi  , i n 1, ... , .

Since X X Xn1 2, , ... ,� 	  is a basis of g, every [ , ]X X gi j   can be expressed uniquely as,

1) [ , ]X X c Xi j ij
k

k  where cij
k R

i) Note that if i j X Xi j= , [ , ]  0

So, let i j .  Then from a known result,

[ , ] [ , ]X X X Xi j j i 

Using 1) we find that

c X c Xij
k

k ji
k

k 

As the set X Xn1, ... ,� 	  is a basis of g and hence linearly independent, we must have

c cij
k

ji
k 

ii) Using Jacobi Identity, we find that

[ , ], [ , ], [ , ],X X X X X X X X Xi j s j s i s i j   

Hence from 1)

c X X c X X c X Xij
k

k s js
k

k i si
k

k j[ , ] [ , ] [ , ]     as [ , ] [ , ],bX Y b X Y b R 

Again applying 1) , we find that

c c X c c X c c Xij
k

ks
t

t js
k

ki
t

t si
k

kj
t

t   

As X Xn1, ... ,� 	  is a basis and hence linearly independent, we must have

c c c c c cij
k

ks
t

js
k

ki
t

si
k

kj
t   
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. 2.3 Invariant Differential Form :

A differential form  on a Lie group G is said to be left invariant if

2.13) La L p pa

*
( ) , � �     p G

we write it as

2.14) La
*    and call La

* , the pull-back differential form of .

Similarly, a differential form   on a Lie group G is said to be right invariant if

2.15) Ra
*  

A differential form, which is both left and right invariant, is called a biinvariant differential
form.

Exercises : 1. If  1 2,  are left invariant differential forms, show that, each d  , 1 2
is also so.

2. Prove that a differential 1-form   on a Lie group is left invariant if and only if for
every left invariant vector field X on G, (X) is a constant function on G.

3. Let   : G   G be such that ( ) ,a a 1  a G.  Show that a form  is left

invariant if and only if  *  is right invariant.

4. Prove that the set of all left invariant forms on G is an algebra over R. Such a set is
denoted by A, say.

5. If g* denotes the dual space of g, then, prove that

A  g*

where A is the set already defined in Exercise 4 above.

Solution : 1. From Q 1.13, we see that

L d d La a
* *( ) 1 1 � �

where La
* 1 is the pull-back 1 form of 1

Using on (2.14) on the right hand side of the above equation, we see that

L d da
* ( ) 1 1
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Consequently, d1  is a left invariant differential form.

It can be proved easily that  1 2  is a left invariant differential form.

2. Let us consider a differential 1-form  . Then for every a G ,  La
*   will be

defined as the pull-back differential 1-form. Consequently from the definition of pull-back.

L Xa L p pa

*
( ) ( )� �   L p a pa

L X( ) *( ) ,� �   p G

Let us consider X to be left invariant. Then on using (2.6) on the right hand side of the
above equation, we get

1) L Xa L p pa

*
( ) ( )� �   L p L pa a

X( ) ( )� �

Let us now consider   to be left invariant 1-form. Then by (2.13), we get from 1)

 p p L p L pX X
a a

( ) ( ) ( ) � �

 ap apX( )

Taking p e ,  we see that

  e e ae ae a aX X X( ) ( ) ( ) 

Consequently, (X) is a constant function on G.

Conversely, if (X) is a constant function on G, then

( ) ( )p p ap apX X  

Hence 1) reduces to

L X Xa L p p p pa

*
( ) ( ) � � 

or La L p pa

*
( )  which is (2.13)

Thus   is a left invariant differential form.

This completes the proof.
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Theorem 1 : If g is a Lie subalgebra of a Lie group G and g*  denotes the set of all left

invariant form on G, then

d X Y X Y ( , ) [ , ]  1
2
� �  where g* ,  X Y g, ,

Note : Such an equatioin is called Maurer-Carter Equation.

Proof : From theorem 1 of  1.12, we know that

d X Y X Y Y Y X Y   ( , ) ( ) ( ) [ , ]  1
2
� � � � � �� �  for every vector field X, Y

If X, Y are in g  then by Exercise 2,  ( ), ( )X Y  are constant functions on G. Hence by

Exercise 2 of  1.4),

X Y. ( ) ,  0  Y X. ( )  0

Thus the above equation reduces to

d X Y X Y ( , ) [ , ] . 1
2
� �

Exercise : 6. Show that

d c ci
jk
i

j k

j k
jk
i

j k

k j         1
2 , ,

Solution : If X X Xn1 2, , ... ,� � is a basis of g and  1, ... , n� �  is the dual basis of g* , then

1)  i
j j

iX( ) 

Hence from theorem 1 above

d X X X Xi
j k

i
j k ( , ) [ , ]  1

2 � 	

 


��
�

�
��
��

1
2
i

jk
m

mc X  from Exercise 2 of Q 2.2

1 1
( )

2 2
       m i m i

m mjk jkc X c

  1
2

c jk
i   by i)
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Again from  1.11

c X X cmn
i m n

j k mn
i

m nm n
( ) ( , )

,,
    1

2    m
j

n
k

m
k

n
jX X X X( ) ( ) ( ) ( )� �

 1
2

cmn
i

m n
j
m

k
n

k
m

j
n

,
   � �

 1
2

c cjk
i

kj
i� �

 1
2

c cjk
i

jk
i� �  by i) of Exercise 1 of  2.2

 1
2

2 c jk
i

 c jk
i

Thus d X X c X Xi
j k mn

i

m n

m n
j k  ( , ) ( , ),

,
  1

2
  x xj k,

or d cmn
i

m n

m n    1
2 ,

or d ci
j k
i

j k

j k    1
2 ,

Take i, j, k = 1, 2, 3  ,  then

c c c cj k
i

j k

j k i i i

,
              12

1 2
13

1 3
21

2 1  ci
23

3 2 

   c ci i
31

3 1
32

3 2   

     2 2 212
1 2

13
1 3

23
2 3c c ci i i     

as c cj k
i

h k
i 

 

2 c j k

i

j k

j k 
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Thus, we write

d ci
j k
i

j k

j k    



Hence

d ci
j k
i

j k

k j    

 .

. 2.4 Automorphism :

A mapping, denoted by a  for every a G , a : G G

defined by

a x axa( ) , 1    x G

is said to be an inner automorphism if

i)   a a axy x y( ) ( ) ( )

ii) a  is injective

iii) a  is surjective

such a  is written as ada.

Exercise : Show that if G is a Lie group, hG,  then the map

I G Gh : 
defined by

Ih k hkh( )  1

is an automorphism.

An inner automorphism of a Lie group G is defined by

2.16) ( )( ) ,ada x axa 1   x G

Now, ( ) ( ) ( ) ( )( )L R x L R x L xa axa ada xa a a a a     
1 1

1 1

 L R adaa a  1

Using  2.3) we get
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2.17) ada L R R La a a a  1 1

Note that ada is a diffeomorphism.

Theorem 1 : Every inner automorphism of a Lie group G induces an automorphism of the
Lie algebra g of G.

Proof : For every a G  let us denote the inner automorphism on G by

i) ( ) ( ) ,ada x axa 1    x G

Now for every G, eG  and from  1.7 such ada : G G  induces a differential mapping
(ada)* ,

( ) :*ada adaT (G) T T (G)e (e)
(G)

e 

Such a mapping is a linear mapping and by Theorem 2 of  2.2, the Lie subalgebra g of a

Lie group G is such that

g T (G)e

Thus to show every ada induces an automorphism of the Lie algebra g of G we are to show

ii) (ada)* is a mapping from g to g

iii) (ada)* is a homomorphism i.e.

( ) ( ) ( ) ( )* * *ada X Y ada X ada Y  

( ) ( ) ( )* *ada bX b ada X

( ) [ , ] ( ) ( )* * *ada X Y ada X ada Y    ,     X Y,  in g

iv) (ada)* is injective

v) (ada)* is surjective

ii) Let Y G . Then on using 2.17) we get

( )* *
ada Y R L Ya a 1 �� �   R L Ya a1� � � �* *       as  ( )* * *f g f g� �

 R Ya 1� �*
Thus

vi) ( )* *
ada Ra 1� �

Again, ( )* *
L R Yp a 1� �� �  ( )* *

L R Yp a 1� �� �   , for every p G
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 L R Yp a� 1� �
*

 R L Ya p1 �� �
* by  2.3)

 R L Ya p1� � � 	� �* *
�

= R L Ya p1� � � �* *

= R Ya 1� �* as Y g

Consequently, from above, it follows that R Ya 1� �*  g .

Hence (ada)* is a mapping from g to g.

iii) From  1.7) we know that such (ada)* is a linear mapping

i.e.

( ) ( ) ( ) ( )* * *ada X Y ada X ada Y  

( ) ( ) ( ) ,* *ada bX b ada X   b R

Further, such (ada)* satisfies

( ) [ , ] ( ) , ( )* * *ada X Y ada X ada Y

Thus (ada)* is a homomorphism from g to g.

iv) Clearly (ada)* is injective, on using vi) and the fact that Ra1  is a translation on G.

v) For every a G,  a 1 G  and we set

( ) ,*ada X Y 1  where X G

we will show that Y G  and ( ) .*ada Y X  Now, for sG,

( )*L Ys  ( ) ( ) ( ) ( )* * * *L ada X L R La Xs s a
 1 1

� by (2.17)

 ( ) ( ) ( )* * *L R L Xs a a 1� �

 ( ) ( )* *L R Xs a�
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= ( ) ( ) ( )* * *L R X R L X R Xs a a s a� � 

 ( )*ada X1

 Y  as defined.

Thus Y g

Finally

( )*ada Y  L R Ya a� 1� �*   by (2.17)

 
L R ada Xa a� 1

1� �* *( )   as defined

  L R R L Xa a a a� �1 1� � � �* *  by (2.17)

  L R R L Xa a a a� �1 1� �*  by (1.7)

 ( )*L Xe  by (2.3) , where ( )*Le  is the identity differential

= X

Consequently, ( )*ada  is a surjective mapping.

Combining ii) –– v), we thus claim

( ) :*ada g g

is a Lie algebra automorphism.

This completes the proof.

Note : We also write

( )*ada  = Ada  ,  for every a g .

and a  Ada

is called the Adjoint representation of G to g.

. 2.5 One parameter subgroup of a Lie group

Let a mapping

a  :  R   G

denoted bya  :  t   a(t)



81

be a differentiable curve on G. If for all s, t in R

a t a s a t s( ) ( ) ( ) 

then the family a t t R( ) | � 	  is called a one-parameter subgroup of G.

Exercises : 1. Let H = a t t R( ) | � 	  be a one-parameter subgroup of a Lie group G.

Show that H is a commutative subgroup of G.

2. If X is a left invariant vector field on G, prove that, it is complete

We set

2.18) a t a et t( ) ( )  

where t t: R� 	  is one parameter group of transformations on G, generated by the left

invariant vector field x.

Exercises : 3. Let t t| R� 	  be a one-parameter group of transformations on G, gener-

ated by X g  and t e a t( ) ( ).  If for every s g ,

 t s s tL L� �

show that the set a t t R( ) | � 	  is a one-parameter subgroup of G and

t aR
t

  holds, for all t R

4. Let the vector field X be generated by the one parameter group of transformations

R t Rat
| � 	  on G. Show that X is left invariant on G.

Solution : As t t| R� 	  is a one-parameter group of transformations on G and

a t R a t: ( )  G  is a differentiable mapping, by definition

a t a s L a sa t( ) ( ) ( )( )  � �

= L ea t s( ) ( )� � , as defined in the hypothesis

 L ea t s( ) ( )� 
 �

 s a tL e� ( ) ( )
 �  by the hypothesis
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 s a t
eL ( )

( )� �

 s a t e( )� �

 s a t( )� �

 s tq e( )� �  as defined

  s t e
�

� �( )

= s t e ( )  is  ( )t� 	  a one-parameter group of transformations on G

 t s e( )   , as s t t s    in R

 a t s( )

Thus the set a t t R( ) | � 	  is a one-parameter subgroup of G.

Again    t t t s t ss se L e L e( ) ( ) ( ) ( )( )  � � �  L e L as t s t ( ) ( )� �  by (2.18)

 sat

or t as R s
t

( ) ( ),      s G

 t aR
t

4. From Exercise 3 above

Ra tt
 

As it is given that R t Rat
| � 	  generates the vector field X, from  1.9, we can say that Xs

is the tangent vector to the curve Rat
 and we write

X f t t
f R s f ss at

  lim ( ) ( )0
1 
 �� 

   lim ( ( )) ( )( )t t
f L R q s f L q sq a qt0

1 1 1� �� �
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   lim ( ( )) ( )( )t t
f L R q s f L q sq a qt0

1 1 1� �� �

   lim ( ) ( ) ( )( )t t
f L R q s f L q sq a qt0

1 1 1
� �� �� �

i) X f X f Ls q s q 1 ( )�  from  1.9

We are left to prove that X g .  Note that, for q g .

L G Gq : 

is a left translation on G and ( ) : ( ) ( ) ( )* ( )L T G T G T Gq p L p qpq
   is its differential. Hence

( ) ( )*L X f X f Lq p q� �  �  by  1.7, where f F G ( )

or ( ) ( )* ( )
L X f X f Lq L p p q

q

� 	  �

If  L p sq ( ) ,  then p L s L sq q 


1
1( ) ( )   by (2.5)

 p q s 1

Consequently, the above equation reduces to

( ) ( )*L X f X f L X fq s q s q s� �  1 �      by i)

 ( ) ,*L X Xq s s� �     s G

 ( ) ,*L Xq   which shows that X is left invariant.

Theorem 1 : If X, Yg,  then

[ ] limY,X Y Y  
t t

Adat
�

1 1� �� �

Proof : Every Xg  induces t t| R� �  as its 1-parameter group of transformations on

G. Hence by 1.9.

[ ] [ ] limY,X X,Y Y Y*    t t t
�

1 � 	� �
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Now from  2.4

A Y = Y
*

da adat t
 1 1
 � 
 �

  R L Ya at t
� 1� 

*
 by  2.17)

= R L Ya at t
�  � � �* *

1

 R Yat
� 

*
   , as Y g

=  t� 	*Y  by Exercise 3.

Consequently, the above question reduces to,

[ ] limY, X A Y Y  
t t

dat
�

1 1� �� �

 2.6 Lie Transformation group (Action of a Lie group on a Manifold)

A Lie group G is a Lie transformation group on a manifold M or G is said to act
differentiably on M if the following conditions are satisfied :

i) Each a G  induces a transformation on M, denoted by

p pa ,   p M.

ii) (a, p) : G M p M  a  is a differentiable map.

iii) p ab pa b( ) ( )    ,    a b p, , .G M

We say that G acts on M on the right.

Similarly, the action of G on the left can be defined.

Exercise : 1. Let G = GL R2 ( )  and M = R and

 : G M M 

be a differentiable mapping defined by

 a b p ap b0 1
�
�

�
�

�
�

�
�  , ,  a  0,  a b, R

Show that   is an action on M.
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Solution : In this case, 1 0
0 1
�
�

�
�  G  and

i)  1 0
0 1
�
�

�
�

�
�

�
�, p    1 0p ,  = p

ii) , ,
0 1 0 1

a b a b
p

       
           

=   �
�

�
� �

�
�
�

a b ap b0 1 ,  as defined

    a ap b b( ) ,   as defined

     a ap a b b ,

    �
�

�
�

�
�

�
� aa a b b p0 1 ,  as defined

  �
�

�
�
�
�

�
�

�
�

�
� a b a b p0 1 0 1 ,

Thus   is an action on M.

Definition : If G acts on M on the right such that

2.19) pa p ,   p M  implies that a e

then, G is said to act effectively on M.

Note : There is no transformation, other than the identity one, which leaves every point
fixed.

If G acts on M on the right such that

2.20) pa p ,  p M , implies that a e  for some pM  then, G is said to act freely on

M.

Note : In this case, it has isolated fixed points.

Theorem 1 : If G acts on M, then the mapping

 : ( )g  M

denoted by

 : A ( ) * A A
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is a Lie Algebra homomorphism

Note : ( )A  is called the fundamental vector field on M corresponding to A g .

Proof : For every p G  let

 p : G M

be a mapping such that

i)  p a pa( ) 

Such a mapping is called the fundamental map corresponding to p M .

We want to show that

 : ( )g  M

is a Lie Algebra homomorphism i.e. we are to prove

ii)   ( ) ( ) ( )X Y X Y  

iii)  ( ) ( ),bX b X b R 

iv)   [ , ] [ , ]X Y X Y

It is evident from i) that

v)  p aa pa p( ) ( )  R

Let A g . Then from 2.5, A generates t t| R� �  as its 1-parameter group of transfor-

mation on G, such that

a t a et t( ) ( )  

In this case, such a t( )  is the integral curve of A on G. The map

* ( )( ) : ( ) ( )  
pp e e pT G T M T (M)

is the differential map of  p  and is a linear mapping by definition such that

( ) ( ).* p e pX T M

Using the hypothesis of the theorem

vi)   p e e p p
p

� � � � � �
* ( )

*A (A) (A) A  
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Note that for every A, B, in g, A + B is in g and hence

 (A + B) (A + B)� � � �p p e
*

  p� �
*
(A + B )e e   p p� � � �

* *
,A + Be e  as  p� �

*
 is linear

     (A) (B)� � � �p p

   (A + B) = (A) + (B),    p M.

Also for b R   bA g and hence

 ( )
*

bA (bA)� � � �p p e     p e p e pb� � � �
* *

{ ( )}(A) A b A

  ( ) ( )b bA A

Thus   is a linear mapping

Now Ae is the tangent vector to the curve a t at( )   at a e( ) .0   Consequently by

1.7, the vector field   e ( )*
A T (M) T (M)  

pp e p  is defined to be the tangent vector to the

curve  p t t aa pa p
t

( ) ( )  R  at  p o pa e p( ) ( ) .   consequently, by vi), we see that Ae
*

induce Rat
p  as its one-parameter group of transformations on M.

Again [ ( ), ( )] [ , ] A B A B* *
p p

  
���

	
�
lim *

*
*

t t p a
pt0

1 B R B� �   by Theorem 3 of 1.9

  lim
*

*
t t p a qt0

1 � � � �� �* eB R B  say, where

vii) p qat
 R ( )

viii) or q p p paa a tt t
  

 
R R� 

1
1

1 ( )

Thus R B R Ba q a pat t t
� � � �

*
*

*
* 1  by vii) above

 R Ba pa et t
� � � �

* *
 1  by vi)

 R Ba pa et t
� 1� �

*
 where R G Ma pat t

�  1 :
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Hence for bG

R Ra pa a pa
b

t t t t
b�  1 1� � � �( ) ( )

= Ra tt
pa b( )1  by i)

= pa bat t
1  by definition

  p t ta ba1� �  by i)

   p tada b1( )� �  by 2.16) of  2.4

  p tada�
1� � ( )b

 Ra pa p tt t
ada� �   

1
1

Consequently, R R Ba q a pa et t t
B� � � �

*
*

*
 � 1  reduces to

R Ba q p t et
B ada� � � �

*
*

*
  �

1   p t eada� � � �� * *
1 B   p t eda� � � �� * *

A B1  from the

Note of 2.4

Thus we find

   ( ), ( ) lim ( )* * *
A B A B

p p e p t et t
B da   

0
1 1� � � �� �� �

    p e t et t
da� � � �� �* *

lim
0

1 1B A B  as  p� �
*

 is a linear mapping.

  p e� �
*
[ ]A,B  by  1.9

 [ ]A, B� � p  by vi)

   [ ] ( ), ( )A, B A B

Thus the mapping

 : ( )g  M

is a Lie Algebra homomorphism.
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Theorem 2 : If G acts effectively on M, then the map

 : ( )g  M

defined by

 : ( ) *A A A 

is an isomorphism.

Proof : From Theorem 1, we know that such map  : ( )g  M  is a Lie Algebra homo-

morphism. Hence we are left to prove that

i)   is injective and ii)   is surjective.

i) Let A, B g  and  ( ) ( )A B  Then

 ( ) ,A B   as   is a linear mapping.

or ( )*A B  

i.e. ( )*A B  is the null vector on M. Now A–B g  and it will generate  t e t( ) | R� �
as its 1-parameter group of transformations on G such that ( )A B e  is the tangent vector to the

curve, say

b t b et t( ) ( )    at b o e( ) 

Consequently, the vector field ( ) ( )*
*

A B A B   p e� �  is the tangent vector to the curve

 p t bb t pb R p
t

( ) ( )� 	    at  p pb o e pe p( ) ( ) .� 	   

Thus ( ) ( )*
*

A B A B   p e� �  generates R Rbt
p t( ) | � �  as its 1-parameter group of trans-

formations on M. But ( )*A B  is the null vector on M. Hence the integral curve of ( )*A B
will reduce to a single point of itself. Thus

Rbt
p p( ) 

or pb pt 

As G acts effectively on M, comparing this with 2.19) we get, b et  ,   p M.

Again Lq� �
*
( )A B A B    as ( )A B g
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 L Lq t t q� �   from  1.9

Thus   t t t qq qe e( ) ( ) � � � �L   ( ) ( ) ( ) ( ) ( ) � �L L Lq q t q te e b

  qb q qt e

Hence from  1.9

( ) lim ( ) ( )A B   q tf t t
f q f q0

1 � 	� �  reduces to

( ) lim ( ) ( ) .A B    q f t t
f q f q0

1 
 � 

Thus A B = 

i.e. A = B.

Hence  ( ) ( )A A  implies that A = B. Consequently   is injective.

ii) As G acts effectively on M,   is surjective.

Thus the map is a Lie Algebra isomorphism and this completes the proof.

Theorem 3 : If G acts freely on M, then, for every non-zero vector field Ag, the vector

field A*  on M can never vanish.

Proof : If possible, let A*  be a null vector on M. Then, as done in the previous theorem,

every A g will generate  t e t( ) | R� �  as its 1-parameter group of transformations on G and

we will have

 t q q( ) 

Consequently from the definition, as given in  1.9

Aq t
t

f d
dt

f q �
��

�
�� 

 ( )� �
0

 
lim ( ) ( )

t
f q f q

t
t

0
� �

= 0.
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Hence A becomes a null vector, contradicting the hypothesis. Thus the vector field A*  on
M can never vanish.
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UNIT - 3

 3.1 Linear Connection :

The concept of linear (affine) connection was first defined by Levi-Civita for Riemannian
manifolds, generalising the notion of parallelism for Eucliden Spaces. This definition is given
in the sense of KOSZUL.

A linear connection on a manifold M is a mapping

  : ( ) ( ) ( )  M M M

denoted by

  : ( )X,Y YX

satisfying the following conditions :

i)     X X XY Z Y + Z( )

ii) Y Z(Y+Z)X X X   

iii) Xf XY f Y  

iv) X X(f Y) (X f )Y+f Y   ,    X,Y,Z (M),   F(M) f

The vector field XY  is called the covariant derivative of Y in the direction of X with

respect to the connection

If P is a tensor field of type (o, s) we define

v) XP = XP,    if  s = o

vi) X 1 2 nP Y Y Y� 	� 	, , ... ,     
s

1 2 n 1 X i s
i=1

X P Y , Y , ... , Y P Y , ... , Y , ... , Y  
Exercise 1 : Let M = Rn and X, Y, (M)  be such that

Y = bi

=1


xi

i

n

  where  X
iY Xb
 � xi

Show that   determines a linear connection on M.
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Solution : Let X =a
x

i
i




,  Z =c
x

i
i



 with a ci i, F(M),  i n= , ... ,1

Then i)     X Y Z X( ) b c
x

i i
i
 �� � 

  , as defined

   Xb Xc Xb Xci i
i

i
i

i
ix x x


 � 
 � 
 �








  X XY + Z

Similarly it can be shown that

(Y+Z) Y ZX X X    

Again,   f
i

i
i

i
f b

x
f

xX
Y X Xb� 	
 � 
 �� �





 as ( ) ( )f fY h Yh

= YXf   and

 X Y X( )f f b
x

i
i
 �� �   as   ( ) ( )X Xf b f b

x
i i

i
 � 


  as  X( g) = (X )g + (Xg)f f f

 ( ) ( )X Xf b
x

f b
x

i
i

i
i







 ( )X Y + YXf f

Thus   determines a linear connection on M.

Let ( , , ... , )x x xn1 2  be a system of co-ordinates in a neighbourhood U of p of M.

We define

3.1) 






x
j

i
x

=  

xk  where F(M)

Such  are called the christoffel symbols or the connection co-efficients or the compo-
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nents of the connection.

Hence if

X   


i
ix

,  Y   


j
jx

 where each  i j, ,F(M) i n1, ... ,  we see that

  �
�

 
!XY =

i 


 
x

j
j

i x

  �
�

 
!  




i

x

j
j

j x
  by  iii)

  
�
"

�
�# 





 


i
j

i j
j

kx x x
 by  iv) and 3.1)

3.2)  
�
"

�
�#XY =  


  


i

k

i
i j

kx x

Exercise 2 : Let  and 
ij

 be the connection co-efficients of the linear connection 

with respect to the local coordinate system ( , ... , )x xn1  and ( , ... , )y yn1  respectively. Show

that in the intersection of the two coordinate neighbourhoods

  
 




2 x
y y

y
x

l

i j

k

l
t

rs









x
y

x
y

y
x

r

i

r

j

k

t
 

Solution : In the intersection of the two coordinates








y

x
y xj

l

j l
 

or


















y
x y

y
x

x
y x x

j

s j

j

s

l

j l s
    

Again, from 3.1) we see that

















y y
x
y xk

y
j

y

l

j l
i i

    
�
��

 
!�  from above
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2x
y y x

x
y x

l

i j l

l

j
y

l
i

    by iv)

   



 














2 x
y y x

x
y x

l

i j l

l

j x
y x

ls

i s
    from above

    
 















2x
y y x

x
y

x
y x

l

i i l

l

j

s

i
x

l
s

  by  iii)

   
 













2 x

y y x

x

y

x

y x

l

i j l

l

j

s

i sl
k

k   by  3.1)

    
 
















2 x

y y

y

x y

x

y

x

y x

l

i j

k

l k

r

i

s

i rs
t

t

Changing  s   r

               l   s

           k   t

      
 



















2 x
y y

y
x y

x
y

x
y

y
x y

l

i j

k

l k rs
t

r

i

s

j

k

t k
   from above

2                      

l k r s k
t
rsi j l i j t k k

x y x x y

y y x y y x y y

Since 
y

k n
k

:   ���
	
�

1  is a basis of the tangent space and hence linearly independent and

the result follows immediately.

3.2 Torsion tensor field and curvature tensor field on a linear connection

we define a mapping

T :   M M M� � � � � �    by

3.2)  T X, Y X, Y
X
Y

Y
X� 	     

and another

R :    M M M� � � � � �  
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3.3)  R X, Y Z Y
Z

X
Z

X, Y
� 	        X Y

Z

Then T is a tensor field of type (1,2) and is called the torsion tensor field and R is a tensor
field of type (1, 3), called the curvature tensor field of M.

A linear connection is said to be symmetric if

3.4)  T(X, Y) = 0

In such case

3.5)  X, Y
X
Y

Y
X   

Exercise : 1. Verify that

i)  T(X, Y) = –T(Y, X);

ii)  T X, Z T Y,ZfX gY Z fT g  ,� 	 � 	 � 	 ;

iii)  T(fX, gY) = fg T(X, Y).

2.  If     X
Y

X
Y T X, Y� � , show that   is a linear connection and T T 

3.  Show that

i)  T T X, Y , Z T , Z T Z, T X, Y , ZX
Y

Y
X� �� � � � � � � �    

ii)  R X, X Y 0; R X, Y Z R Y, X Z� � � � � �   ;   R X, Y Z + R Y, Z X R Z, X Y = 0� � � � � �

iii) R T X, Y , Z R ,Z R Z, R X, Y , ZX
Y

Y
X� �� � � � � � � �    

iv) R X, fY Z R fY, Y Z R X, Y fZ f R X, Y Z� 	 � 	 � 	 � 	  

Hence Show that

R fX, gY hZ fgh R X, Y Z� 	 � 	

4. Exercise 3 : Prove Ricci Identity

a) for a 1-form w :

     �
�

 
!  X Y Y X X, Y

Z W R X, Y Z   � 	� �
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b) for a 2-form W :

       X Y
W

Y X
W

X, Y
W Z, P W R X, Y Z, P W Z, R X, Y P� 	� � � �� � � �� �

5. If  x xn1, ,  � �  is a local coordinate system and

T
x

,
x

T
x

, R
x

,
y x

R
xi j ij

k
k i j k ijk

h
h






















�
	


�
� 

�
	


�
� 

Show that

i) T andij
k

ij
k

ji
k

ij
k

ij
k     for a symmetric linear connection

ii) R
x xijm

k
i jm

k
j im

k
jm
t

ti
k

im
t

jt
k   





Solution : 1 i) From the definition

Y XT(Y, X) X Y [Y,X]   

Y XX Y [X,Y]   

 X YY X [X,Y]    

 T X Y( , )

Thus T is skew-symmetric

ii) fX gY ZT(fX gY, Z) Z (fX gY) [fX gY, Z]      

X Y Z Zf Z g Z (fX) (gY) [fX, Z] [gY, Z]       

 g Y Z Zg Y[ , ] ( )
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   X Z Y Zf Z X [X,Z] g Z Y [Y,Z]       

 fT X Z gT Y Z( , ) ( , )

Again, using the definition, given in  3.1 and also from  1.5 we get

Thus T is a bilinear mapping.

2. To prove that   is a linear connection, we have to prove i), ii), iii), iv) of  3.1. Now

X X(Y Z) (Y Z) T(X, Y Z)        as defined

X XY Z T(X,Y) T(X,Z)    

X XY Z ,     as defined

similarly, other results can be proved and hence   is a linear connection. Now,

X YT(X,Y) Y X [X,Y] ,       by definition

X YY T(X,Y) X T(Y,X) [X,Y] ,       as defined

  T X Y T X Y T X Y( , ) ( , ) ( , )  by Ex 1 (i) above

 T X Y( , )

  T T 



99

3. (iv) From the definition

R(X,fY)Z X fY fY X [X,fY]Z Z Z     

X Y Y X f[XY] (XfY)(f Z) f Z Z      

Y X Y Y X [X,Y] Y(Xf ) Z f Z f Z f Z (Xf ) Z           

 X Y Y X [X,Y]f Z Z Z     

fR(X, Y)Z  by definition.

5. From the given condition

i j
i j j i i j

x x

T , ,
x x x x x x 

 

                           

Using 3.1) we find

k k
ij jik k

0
x x

     
 

or,  k k k
ji ij jik k

T ,
x x
    
 

 as defined

Since 
k

: k 1, , n
x

   
��  is a basis and hence linearly independent and thus

i)  k k k
ij ij ji    

If the linear connection is symmetric, then T = 0. consequently, the above equation
reduces to

k k
ij ji  
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ii) From the definition, we see that

i j j i i j
i j m m m m,

x x x x x x

R ,
x x x x x x      

       

                    

i j

k k
jm imk k

x x
x x 

 

               
 as i j

, 0
x x

      

k k t k k
jm jm ik im imi k t j k tx x x x x x

                           

Changing the dummy indices t k,k t   in the 2nd and 4th term we get

k k t k k t k
ijm jm jm it jm im jtk i k k j k k

R
x x x x x x x

                        

Since 
k

: k 1, , n
x

   
��  is a basis and hence linearly independent, we get from above

k k k t k t k
ijm jm im jm it im tji j

R
x x

          
 

 3.2 Covariant Differential of A Tensor Field of type (o, s)

The covariant differential of a tensor field of type (0, s) is a tensor field of type (0, s + 1)
and is defined as

3.6)  x 11 2 X 1 X 1 2 S( P)(X ,X , , X ) P (X ,X , ; , X )
  �� ��

Exercise : 1 Let i  be the components of a vector field Y with respect to a local coordi-

nate system 1 n.....(x , ,x )  i.e. i
i

Y
x

 


If i
j,  be the components of the convariant differential Y,  so that 

i

i
j i

x

Y ,
x




  


then, show that
i

i i k
j kjj

,
x

    


2. Let   be a 1 form and l xd l

If we write

i
k,ik

x
x
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h
l x iki k h
d l

x x x
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UNIT - 4
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Theorem 1 : Every Riemannian manifold (M, g) admits a unique Riemannian Connection.

Proof : To prove the existence of such a connection, let us define a mapping

: (M) (M) (M)     

denoted by

X: (X,Y) Y 

as follows

4.3)

Clearly, X X X2g( Y Z),W) 2g( Y, W), 2g( Z,W)    

Xg(Y Z, W) (Y Z)g(W,X) Wg(X,Y Z) g([X,Y Z],W) g(X,[W,Y Z])         

g(Y Z,[W,X]) Xg(Z, W) Yg(W,X) Wg(X, Z) g([X,Y),W) g(X,[W,Y])      

g(Y,[W,X]) Xg(Z, W) Zg(W,X) Wg(X,Z) g([X, Z], W)    

g(X,[W, Z]) g(Z,[W,X]) 

0

X X X2g( (Y Z) Y Z,W) 0,       as g is linear

Whence

X X X(Y Z) Y Z     

Similarly it can be shown that

X Y X YZ Z Z,    

f X XY f Y,  

X X(fY) (Xf )Y f Y   

Thus such a mapping determines a linear connection on M. Also, from (4.3) it can be
shown that

X2g( Y,Z) Xg(Y, Z) Yg(Z,X) Zg(X,Y) g([X,Y], Z) g(X,[Z,Y]) g(Y,[Z,X])      
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X X2Xg(Y,Z) 2g( Y, Z) 2g(Y, Z) 0    

or, X X Xg(Y,Z) g( Y, Z) g(Y, Z) 0       by v) of  .3.1

or, X( g)(Y, Z) 0,   X,Y,Z

Thus such a linear connection admits a metric connection. Further, it can be shown that

X YY X [X,Y] 0   

Hence such a metric connection admits a Riemannian connection

To prove the uniqueness, let   be another such connection. Then we must have

X XXg(Y, Z) g( Y,Z) g(Y, Z) 0      and X YY X [X,Y] 0   

X XXg(Y, Z) g( Y,Z) g(Y, Z) 0      and X YY X [X,Y] 0   

Subtracting,

X X X Xg( Y Y,Z) g(Y, Z Z) 0 X,Y, Z         and X X Y YY Y X X     

where form, we get

X XY Y 0  

X XY Y 

Thus uniquences is established. This completes the proof

Exercise : 1 In terms of a local coordinate system 1 2 n....{x , x , ,x } in a neighbourhood U of p of

a Riemannian Manifold (M, g) show that

i) the components i
jk  defined in UNIT 3 is symmetric and

ii) the Riemannian metric is covariantly constant.

2. Let   be a metric connection of a Riemannian manifold (M, g) and �  be another

linear connecting given by

X XY Y T(X,Y)  �

where T is the torsion tensor of M. Show that the following condition are equivalent

i) g 0 �  and ii) g(T(X,Y), Z) g(Y,T(X,Y)) 0 

3. In terms of a local coordinate system 1 n.......{x , , x } the components i
jk  of the Ri-

emannian connection are given by
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4.6) g(X,Y)Z, U) g(R(X,Y)U, Z) 

4.7) g(R(X,Y)Z, U) g(R(Z, U)X,Y) 

Proof : Using 3.3), 3.5) one gets

R(X,Y)Z R(Y,Z)X R(Z,X)Y [X,[Y, Z]] [Y,[Z,X]] [Z,[X,Y]] 0       by Jacobi

identity

4.5) is Left to the reader

To prove 4.6), one gets from 4.1)

X( g)(Z, U) 0, X, Z,U  

X X)Xg(Z,U) g( Z, U) g(Z, U)    

or, Y Y X X(Xg(Z, U)) {g( Z, U) g(Z, U)}     

or, X XY(Xg(Z, U)) Yg( Z,U) Yg(Z, U)   

using )  on the right side we get

Y X X Y Y Y Y XY(Xg(Z, U) g( , Z, U) g( Z, U) g( Z, U) g(Z, U)           

Thus, we find

X(Yg(Z, U)) Y(Xg(Z,U)) [X,Y]g(Z,U) 

   Z U
X Y Y X X Y Y X[X,Y], [X,Y]g Z Z U g Z, U U            

g(R(X,Y)Z, U) g(Z,R(X,Y)U) 

Using the definition of [ X, Y ] f, on the left hand side, one finds

g(R(X,Y)Z, U) g(Z,R(X,Y)U) 0 

Again, R(X,Y)Z R(Y,Z)X R(Z,X)Y 0  

g(R(X,Y)Z) g(R(Y, Z)X, U) g(R(Z,X)Y, U) 0 ..... )   



109

Similarly, we can write

g(R(U, Z)X,Y) g(R(Z,X)U,Y) g(R(X,U)Z,Y) 0 ........ )   

g(R(Y,X)U,Z) g(R(X,U)Y,Z) g(R(U,Y)X, Z) 0 ........ )   

g(R(Z, U)Y,X) g(R(U,Y)Z,X) g(R(Y,Z)U,X) 0 ........ )   

Adding ), ), ), ), )      and using 4.6) we get

g(R(X,Y)Z, U) g(R(U,Z)X,Y) g(R(Y,X)U,Z) g(R(Z, U)Y,X) 0   

Using Exercise 3(ii)  3.2 in the second and in the third term of the above equation.

or, g(R(X,Y)Z, U) g(R(Z, U)X,Y) g(R(X,Y)U, Z) g(R(Z, U)Y,X) 0   

After a few steps one gets

2g(R(X,Y)Z, U) 2g(R(Z,U)X,Y)

i.e. g(R(X,Y)Z, U) g(R(Z,U)X,Y)

Exercise 4. In terms of a local coordinate system 1 n.......{x , , x } in a neighbourhood U of p of

(M, g) show that

i) m m m
ijk jki kijR R R 0  

ii) h h h
ijk,m jmk,i mik, jR R R 0  

iii) h h
hm hkijk jimR g R g 

iv) h h
hm hjijk kmiR g R g 

Solution : i) From ii) of Exercise 5 in  3.2 and also using the result

m m
jk kj  

the result follows immediately
ii) Left to the reader
ii) using ii) of Exercise 5 in  3.2, on finds

h h h t h t h
hmijk jk ik jk ti ik tji i

R g
x x

              

     h h h h
hm hm hm hmjk jk ik iki i j j

g g g g
x x x x
          
   

t h t h
hm hmjk ti ik tjg g    
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Using Exercise 3 of  4.1 we get

mj jkmk mhh h
hmijk jki j k m i

g gg g1
R g

2 x x x x x

              

mt timi mk ik hm mih t
ik jkj k i m j i t m

g gg g g g g1 1

2 2x x x x x x x x

                             

mj tjmtt
ik j t m

g gg1

2 x x x

  
       

Similarly, one can write h
hkijmR g

Thus, h h
hm hkijk ijmR g R g

hj mjhm hi mi hmh h
jk iki m h j m h

g gg g g g1 1

2 2x x x x x x

                        

hj jkkh hi ik hkh h
jm imi k h j k h

g gg g g g1 1

2 2x x x x x x

                       

h t h t h t h t
th th th thjk im ik jm jm ik im jkg g g g           

Thus, h h
hm hkijk ijmR g R g 0       or h h

hm hkijk ijmR g R g 

iv) From Exercise iii) above we write

mh mi hih h h h h
hm hjijk kmi jk jk jki h m

g g g1 1 1
R g R g

2 2 2x x x

         
  

jh jk hkh h h
mi mi mik h j

g g g1 1 1

2 2 2x x x

  
     

  

hj jkmh hi mi hkh h
jk mii m h k j h

g gg g g g1 1

2 2x x x x x x

                        

h t h t
th thjk im mi jk

1 1
g g 0

2 2
          h h

hm hjijk kmiR g R g 
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3.4.2  Riemann Curvature tensor field :
The Riemann Curvature tensor field of 1st kind of M is a tensor field of degree (0, 4),

denoted also by R

R : (M) (M) (M) (M) F(M)       

and defined by

4.10)  R(X,Y, Z, W) g(R(X,Y)Z, W),X,Y, Z,W  in (M)

Exercise : 1 Verify that
i) R(X, Y, Z, W) = – R(Y, X, Z, W)
ii) R(X, Y, Z, W) = – R(X, Y, W, Z)
iii) R(X, Y, Z, W) = – R(Z, W, X, Y)
iv) R(X, Y, Z, W) + R(Y, Z, X, W) + R(Z, X, Y, W) = 0

v) U Z W( R)(X,Y,Z, W) ( R)(X,Y, W, U) ( R)(X,Y, U, Z) 0     

2. If h
ijkR  and hmg  are the components of the curvature tensor and the metric tensor with

respect to a local coordinate system 1 2 n......x , x , , x  then the components ijkmR  of the Rieman

Curvature tensor are given by

h
ijkm hmijkR R g

where ijkm i j k m
R , , ,

x x x x

          

3. A vector field z on (M, g) is called a gradient vector field if

4.11) g(Z,Y) d (Y) Yf , F(M)  f f

for every vector field Y and M. Show that for such Z

X Yg( Z,Y) g( Z,X)    for every vector field X on M.

Solution : From 4.1) we see that

X( g)(Y, Z) 0   for all X, Y, Z in (M)

or X XXg(Y, Z) g( Y, Z) g(Y, Z)   

Using 4.11), one finds

X Xg( Z,Y) X(Y ) g( Y,Z)   f

similarly Y Yg( Z,X) Y(X ) g( X,Z)   f

X Y Y Xg( Z,Y) g( Z,X) X(Y ) Y(X ) g( X,Z) g( Y, Z)         f f
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or, X Y X Yg( Z,Y) g( Z,X) [X,Y] g( Y X,Z)      f

[X,Y] g[X,Y], Z) f  by 4.2)

[X,Y] [X,Y] f f  by 4.11)

= 0
Thus

X Yg( Z,Y) g( Z,X)  
3.4.3 Einstein Manifold :

Let 1 2 n
.....{e ,e , e }  be an orthonormal basis of pT (M)  Then the Ricci tensor field, de-

noted by S, is the covariant tensor field of degree 2 and is defined by

  
n

p p i P P i PP
i 1

S(X ,Y ) R (e ,X ,Y ,(e )



We write it as

4.12)
n

i i
i 1

S(X,Y) R(e ,X,Y,e )



Such a tensor field S(X, Y) is also called the Ricci Curvature of M.
If there is a constant   such that

4.13) S(X,Y) g(X,Y) 
then M is called on Einstein Manifold.
The function r on M, defined by

    
n

i iP P
i 1

r(p) S e , e



is called the scalar curvature of M. We write it as

4.14)
n

i i
i 1

r S(e ,e )



Exercise : 1. Show that the Ricci tensor field is symmetric.

At any p M,  we denoted by   a plane section i.e., a two dimensional subspace of

pT (M) . The sectional curvature of   denoted by K( ) with orthonormal basis X, Y is defined

as
4.15) K( )=g(R(X, Y) Y, X) = R(X, Y, Y, X)
If K( ) is constant for all plane section and for all points of p M,
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Then (M, g) is called a manifold of constant curvature. For such a manifold

4.16) R(X,Y)Z k{g(Y, Z)X g(X,Z)Y}   where k( )  say

Example : Euclidean space is of Constant Curvature

Exercise : 1, Show that a Riemannian manifold of constant curvature is an Einstein Manifold.

2. If M is a 3-dimensional Einstein Manifold, then, it is a manifold of constant curvature

Solution : Let 1 2 3{X ,X , X }  be an orthonormal basis of pT (M)  Then, the sectional curvature

with orthonormal basis 1 2X ,X  denoted by 12K( )  is given by

12 1 2 2 1K( ) R(X ,X ,X ,X ) 

2 1 1 2R(X ,X ,X ,X )

21K( ) 

Thus, ij jiK( ) K( ), i j   

Again from 4.12)

3

1 2 i 1 2 i
i 1

S(X ,X ) R(X ,X ,X ,X )




1 1 2 1 2 1 2 1 3 1 2 3R(X ,X ,X ,X ) R(X ,X ,X ,X ) R(X ,X ,X ,X )  

21 310 K( ) K( )    

12 13K( ) K( )   

2 2 21 23S(X ,X ) K( ) K( )     and

3 3 31 32S(X ,X ) K( ) K( )   

As it is a 3-dimensional Einstein manifold, so from 4.13)

1 1 1 1S(X ,X ) g(X ,X )   

1 2 1 2S(X ,X ) g(X ,X ) 0  
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using the above result in 4.8) we get

X Y
1

Y Y {T(X,Y) (X)Y g(X,Y)p (Y)X g(Y,X)p}
2

        

Again using 4.17), one gets

X YY Y (Y)X g(X,Y)p    

Exercise 1. If   and   correspond to a semi-symmetric connection and the Levi-Civita

connection respectively, then for any 1-form 

 X X( ) Y (X) (Y) (p)g(X,Y),           where

g(X,p) (X) 

2. Let   be the Levi-Civita Connection and   be another linear connection such that

X XY Y (X)Y     where is a 1-form.

Show that   is a semi-symmetric connection for which Xg 2 (X)g  

Hints : 1. Note that

X X( )Y X (Y) ( Y)      

Use Theorem 1 in the second term on the right hand side, one gets the desired result.

2. Note that

X YT(X,Y) Y X [X,Y]    

X YY (X)Y X (Y)X [X,Y]       

T(X,Y) (Y)X (X)Y,     on using the hypothesis

(Y)X (X)Y,   as T 0.

Again, X X X( g)(Y, Z) Xg(Y,Z) g( Y,Z) g(Y, , Z)     

X XXg(Y, Z) g( Y (X)Y, Z) g(Y, Z (X)Z)       

X( g)(Y,Z) 2 (X)g(Y,Z),     on using the hypothesis

Xg 2 (X)g,     as g 0. 
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Or, 1
C(X,Y)Z R(X,Y)Z {g(Y, Z)AX g(X,Z)AY S(Y,Z)X S(X, Z)Y}

n 2
    



r
{g(Y, Z)X g(X,Z)Y}

(n 1)(n 2)
 

 

Exercise : 1 If an n(n 3)  – dimensional Einstein Manifold is conformally flat than

2. If we write

ijkl i j k l
R R , , ,

x x x x

          

ijkl i j k l
C g C , ,

x x x x

              

ij i j
R S ,

x x

      

show that

 ijkl ijkl jk il ik jl jk il ik jl
1

C R g R g R R g R g
n 2

    


 jk il ik jl
r

g g g g
(n 1)(n 2)

 
 

Hints : 1 Using 4.13) in 4.14, one gets r n 

Alsing above result, 4.13), one gets from 4.21)

r
Ax x

n


Using 4.20) in 4.22) and also the result deduced above, one gets the desired result after a
few steps.

2. Using goldberg’s result, one gets from the hypothesis

ijkl i j k l
C g C , ,

x x x x

              

the desired result.
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4.5 Conformally Symmetric Riemannian Manifold :

A Riemannian manifold (M, g) is said to be conformally symmetric if

4.23) C 0 

Where C is the Weyl Conformal Curvature tensor

Theorem 1 : A conformally symmetric manifold is of constant scalar curvature if

Z W( S)(Y, W) ( S)(Y, Z)    for all Y, Z, W

Proof : From 4.22) we see that

1
C(X,Y, Z, W) R(X,Y, Z, W) {g(Y,Z)g(AX,W) g(X,Z)g(AY,W)

n 2
   



r
S(Y, Z)g(X, W) S(X, Z)g(Y, W)} {g(Y,Z)g(X, W) g(X, Z)g(Y, W)}

(n 1)(n 2)
   

 

Taking co-variant derivative on both sides and using (4.23), we get

U U U
1

( R)(X,Y,Z, W) {g(Y, Z)( S)g(X, W) g(X, Z)( S)g(Y, W)
n 2

     


U U( S)(Y, Z)g(X, W) ( S)(X, Z)g(Y, W)}   

Ur
{g(Y, Z)g(X, W) g(X, Z)g(Y, W)}

(n 1)(n 2)


 

 

It is known from Exercise 1(v) of   4.2 that

U U W( R)(X,Y, Z,W) ( R)(X,Y,W,U) ( R)(X,Y, U, Z) 0     

Using the result deduced above, and also the hypothesis one gets

U Zr{g(Y, Z)g(X, W) g(X, Z)g(Y,W)} r{g(Y, W)g(X, U) g(X, W)g(Y, U)}    

Wr{g(Y, U)g(X, Z) g(X, U)g(Y, Z)} 0  

Let i
......{e : i 1, , n}  be an orthonormal basis vectors.
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Taking the sum for 1 i n   for iX U e ,   we get on using the result

ei i zrg(e , z) r  

that

w z z z w wg(Y, Z) r g(Y,W) r ng(Y, W) r g(Y, W) r g(Y, Z) r ng(Y, Z) r 0           

or w zg(Y,Z) r g(Y, W) r 0   

Finally taking the sum for 1 i n   for 
iY Z e ,   we get

wr 0, n 1.  

Thus the manifold is of constant curvature.

Definition : A linear transformation A is symmetric or skew symmetric according as

4.24) g(AX,Y) g(X,AY)

or

g(AX,Y) g(X,AY)




  

Exercise : 1. Show that for a symmetric linear transformation A and a skew-symmetric linear

transformation R,  the new linear transformation T defined by, T A. R R.   A is skew -

symmetric.

Theorem 2 : For a conformally flat n(n 3)  - dimensional Riemannian manifold, the curvature

tensor R is of the form

1 r
R(X,Y) (AX Y X AY) X Y

n 2 (n 1)(n 2)
     

  

where X Y  denotes the skew - symmetric endomarphism of the tangent space at

every point defined by

(X Y)Z g(Y,Z)X g(X, Z)Y  
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Proof : Using the hypothesis, we find that

(AX Y)Z (X AY) g(Y, Z)AX g(X,Z)AY S(Y,Z)X S(X, Z)Y      

As the manifold is conformally flat, we get on using the above result and the hypothesis,

1 r
R(X,Y)Z {(AX Y)Z (X AY)Z} {X Y)Z}

n 2 (n 1)(n 2)
     

  

i.e. 1 r
R(X,Y) (AX Y X AY) X Y

n 2 (n 1)(n 2)
     

  

Theorem 3 : If in a conformally flat manifold, for a symmetric linear transformation A,
R(X, Y)A = A. R (X, Y)

then

2 rA
A X X 0

n 1
     

Proof : Note that
R(X, Y) = – R(Y, X)

As A is symmetric, so by Exercise 1 of this article A. R(X, Y) = R(X, Y). A is skew -
symmetric. Thus R(Z, W)A is a skew symmetric linear transformation and from 4.24) we can
write

g((R(Z, W)A)X, X) = – g(X, (R (Z, W) A) X)

or g(R(Z, W)A)X, X) = – g(X, R (Z, W) AX)

= – g(R(Z, W) AX, X), as g is symmetric.

 g(R(Z, W)AX, X) = 0

Using 4.7) one gets

g(R (AX, X)Z, W) = 0

Whence R(AX, X)Z = 0

i.e., R(AX, X) = 0

Again (AX AX)Z 0   i.e., AX AX 0   for every Z.

Using Theorem 2, one gets

21 r
R(X,AX) (AX AX X A X) X AX

n 2 (n 1)(n 2)
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AS R(AX, X) = –R(X, AX) and R(AX, X) = 0, we get from above,

2 r
X A X X AX 0

n 1
   



Note that X Y  is skew - symmetric and thus

2 r
A X X AX X 0

n 1
   



2 r
A X X 0

n 1
      

Definition : A curve x(t),a t b     is called a geodesic on M with a linear connection   if

4.25) XX 0 

Where X is the vector tangent to the integral curve   at x(t). Note that the integral curves of a
left invariant vector fields are geodesic.

4.7 Biinvariant Riemannian metric on a Lie group :

A Riemannian metric g on a Lie group is said to be biinvariant if it is both left and right
invariants.

Exercise 1 : If g is a left invariant convariant tensor field of order 2 on G and X, Y are left
invariant vector fields on G, show that g(X, Y) is a constant function.

Theoxem 1 : If G is a Lie group admitting a biinvariant Riemannian metric g, then

4.26) g([X, Y], Z) = g(X, [Y, Z])

4.27) 
1

R(X,Y)Z [[X,Y], Z]
4

 

4.28) 
1

g(R(X,Y)Z, W) g([X,Y],[Z, W])
4

 

Proof : Since X, Y are left invariant vector fields, X + Y is also so and hence from 4.25)

X Y
X Y 0
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Using 4.25, we find from above

i) X YY X 0   
since M admits a unique Riemannian connection, we must have

X YY X [X,Y] 0   

ii) or X
1

Y [X,Y]
2

   from i)

Now for a Riemannian Manifold Y( g)(X, Z) 0 

or, Y YYg(X,Z) g( X,Y) g(X, Z) 0    

Using Exercise 1 of this article and Exercise 2 of   1.4 we see that

Y. g(X, Z) = 0

Thus from ii) we find that 
1 1

g([Y,X]Z) g(X,[Y, Z]) 0
2 2

  

or, g([X,Y], Z) g(X,[Y, Z])

or, g([X, Y], Z) g(X,[Y,Z])
Again from the definition

Z
X Y Y X [X,Y]R(X,Y)Z Z Z     

     1 1 1
X,[Y,Z] Y,[X,Z] [X,Y],Z

4 4 2
     by using ii)

     1 1 1
X,[Y,Z] Y,[X, Z] [X,Y], Z

4 4 2
  

   1 1
Z,[X,Y] [X,Y], Z

4 2
    by Jacobi Identity

   1 1
[X,Y],Z [X,Y],Z

4 2
 

 1
[X,Y], Z

4
 

Again   1
R(X,Y)Z, W) g [X,Y], Z , W

4
   by 4.27)

  1
g X,Y], Z , [Z,W]

4
   by 4.26)

This completes the proof.
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Theorem 2 : If G is a Lie group admitting a biinvariant Riemannian metric g and   is a plane

section in pT (M)  where   is determined by orthonormal left invariant vector fields X, Y at p on

G, then the sectional curvature at p is zero if and only if [X, Y] = 0.

Proof : From 4.15)

K( ) g(R(X,Y,)Y,X) 

1
g([X,Y],[Y,X])

4
   by 4.28)

1
g([X,Y],[X,Y])

4


The result follows immediately as g is nonsingular.

Theorem 3 : If G is a Lie group admitting a biinvariant Riemannian metric g, then

for all left invariant vector fields, X, Y, Z, W, P.

Proof : From Jacobi’s identity

[W, [P, Z]] + [P, [Z, W]] + [Z, [W, P]] = 0

Taking P = [X, Y], we get

[W, [[X, Y], Z] + [[X, Y], [Z, W]] + [Z, [W, [X, Y]]] = 0

or [W, [[X, Y], Z]] – [[X, Y], [W, Z]] = [[W, [X, Y]], Z]

= [ – [ X, [Y, W]] – [Y, [W, X]], Z ] by Jacobi Identity

i) [W, [[X, Y], Z]] – [[X, Y], [W, Z]] = [[X, [W, Y]], Z] + [[W, X], Y], Z]

Again from the definition

W W W W( R)(P,Z,X,Y) R(P, Z,X,Y) R( P, Z,X,Y) R(P, Z,X,Y)       

W WR(P,Z, X,Y) R(P, Z,X, Y)   

W W W0 R(X,Y,Z, P) R(X,Y, Z,P) R( X,Y, Z,P)      

WP(X, Y,Z,P) 
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Using 4.28), one gets

     W
1 1

( R)(P,Z,X,Y) g [X,Y], Z,[W,P g [W,Z],P ,[X,Y]
8 8

   

     1 1
g [W,X]Y [Z,P] g X,[W,Y],[Z,P

8 8
 

Using 4.26) successively we get

     1
g [X,Y], Z ,W ,P g [X,Y],[W,Z] ,P

8
    

     g [W,X], Z ,P g [X,[W,Y] ,P] 

     1 1
g W, [X,Y , Z ,P g [X,Y][W, Z] ,P

8 8
    

     1 1
g [X,[W,Y] , Z],P g [[W,X],Y], Z ,P

8 8
 

= 0 by i) for all left invariant vector fields X, Z, Y, W, P.

This completes the proof.
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