
198

Unit 12 Programming Languages and Algorithm

Structure

12.0 Objectives

12.1 Programming Languages

12.1.1 Introduction

12.1.2 Definition

12.1.3 Features

12.1.4 History

12.1.5 Classification

12.1.6 Programme Translation Sequence

12.2 Algorithm

12.3 Exercise

12.0 Objectives

The objectives of the Unit are to :

Explain the concept of programming language

Examine the features of programming language

Discuss classification of programming languages

Present an overview of history of programming language

Trace stages of programme translation

Introduce the concept of Algorithm

12.1 Programming Languages

12.1.1 Introduction
Programming Language is an artifical language used to write a sequence of

instructions that can be run by a computer. Similar to natural languages, such as
Bengali, programming languages have a vocabulary, grammar, and syntax. However,
natural languages are not suited for programming computers because their vocabulary
and grammatical structure may be interpreted in multiple ways.The languages used
to programme computers must have simple logical structures, and the rules for their
grammar, spelling, and punctuation must be precise.

199

Programming languages allow people to communicate with computers. Once a
job has been identified, the programmer must translate, or code it into a list of
instructions that the computer will understand. A computer programme for a given
task may be written in several different languages. Depending on the task, a
programmer will generally pick the language that will involve the least complicated
programme.

12.1.2 Definition
A programming language or computer language is a standardized communication

technique for expressing instructions to a computer. It is a set of syntactic and semantic
rules used to define computer programmes. A language enables a programmer to
precisely specify what data a computer will act upon, how these data will be stored/
transmitted, and precisely what actions to take under various circumstances.

12.1.3 Features of programming language
Programming languages use specific types of statements, or instructions, to

provide functional structure to the programme. A statement in a programme is a basic
sentence that expresses a simple idea—its purpose is to give the computer a basic
instruction. Statements define the types of data allowed, how data are to be
manipulated, and the ways that procedures and functions work. Programmers use
statements to manipulate common components of programming languages, such as
variables and macros (mini-programmes within a programme).

Statements known as data declarations give names and properties to elements of
a programme called variables. Variables can be assigned different values within the
programme. The properties variables can have are called types, and they include such
things as what possible values might be saved in the variables, how much numerical
accuracy is to be used in the values, and how one variable may represent a collection
of simpler values in an organized fashion, such as a table or array. In many
programming languages, a key data type is a pointer. Variables that are pointers do
not themselves have values; instead, they have information that the computer can use
to locate some other variable—that is, they point to another variable.

Each programming language can be thought of as a set of formal specifications
concerning syntax, vocabulary, and meaning. These specifications usually include :

Data and Data Structures

Instruction and Control Flow

Reference Mechanisms and Re-use

Design Philosophy

200

12.1.3.1 Data types
Internally, all data in modern digital computers are stored in binary format.

The data typically represent information in the real world such as names, bank
accounts and measurements and so the low-level binary data are organized by
programming languages into these high-level concepts. The particular system by
which data are organized in a programme is the type system of the programming
language. Languages can be classified as statically typed systems, and dynamically
typed languages.

With statically typed languages, there usually are pre-defined types for individual
pieces of data (such as numbers within a certain range, strings of letters, etc.), and
programmatically named values (variables) can have only one fixed type, and allow
only certain operations : numbers cannot change into names and vice versa. Most
mainstream statically typed languages, such as C, C++, C#, Java and Delphi, require
all types to be specified explicitly; advocates argue that this makes the programme
easier to understand.

Dynamically typed languages treat all data locations interchangeably, so
inappropriate operations (like adding names, or sorting numbers alphabetically) will
not cause errors until run-time-although some implementations provide some form of
static checking for obvious errors. Examples of these languages are Objective-C, Lisp,
Smalltalk, JavaScript, Tcl, Prolog, Python, and Ruby.

12.1.3.2 Data structures
Most languages also provide ways to assemble complex data structures from built-

in types and to associate names with these new combined types (using arrays, lists,
stacks, files).

Object oriented languages allow the programmer to define data-types called
“Objects” which have their own intrinsic functions and variables (called methods and
attributes respectively). A programme containing objects allows the objects to operate
as independent but interacting sub-programmes : this interaction can be designed at
coding time to model or simulate real-life interacting objects. This is a very useful,
and intuitive, functionality. Languages such as Python and Ruby have developed as
OO (Onject oriented) languages.

12.1.3.3 Instruction and control flow
Once data has been specified, the machine must be instructed how to perform

operations on the data. Elementary statements may be specified using keywords or
may be indicated using some well-defined grammatical structure.

201

Each language takes units of these well-behaved statements and combines them
using some ordering system. Depending on the language, different methods of
grouping these elementary statements exist. This allows one to write programmes that
are able to cover a variety of input, instead of being limited to a small number of cases.
Furthermore, beyond the data manipulation instructions, other typical instructions in
a language are those used for control flow (branches, definitions by cases, loops,
backtracking, functional composition).

12.1.3.4 Design philosophies
Since programming languages are artifical languages, they require a high degree

of discipline to accurately specify which operations are desired. Programming
languages are not error tolerant; however, the burden of recognizing and using the
special vocabulary is reduced by help messages generated by the programming
language implementation. There are a few languages which offer a high degree of
freedom in allowing self-modification in which a programme re-writes parts of itself
to handle new cases. Typically, only machine language, Prolog, PostScript, and the
members of the Lisp family (Common Lisp, Scheme) provide this capability.

12.1.3.5 Compiled and interpreted languages
Computer programmes written in any language other than machine language must

be either interpreted or compiled. An interpreter is software that examines a computer
programme one instruction at a time and calls on code to execute the operations
required by that instruction. This is a rather slow process. A compiler is software that
translates a computer programme as a whole into machine code that is saved for
subsequent execution whenever desired. Much work has been done on making both
the compilation process and the compiled code as efficient as possible. When a new
language is developed, it is usually at first interpreted. If the language becomes
popular, it becomes important to write compilers for it, although this may be a task
of considerable difficulty. There is an intermediate approach, which is to compile code
not into machine language but into an intermediate language that is close enough to
machine language that it is efficient to interpret-though not so close that it is tied to
the machine language of a particular computer. It is use of this approach that provides
the Java language with its computer-platform independence.

Programming languages generally fall into one of two categories : compiled or
interpreted. With a compiled language, code is reduced to a set of machine-specific
instructions before being saved as an executable file. With interpreted languages, the
code is saved in the same format that you entered. Complied programmes generally
run faster than interpreted ones because interpreted programmes must be reduced to

202

machine instructions at runtime. However, with an interpreted language you can do
things that cannot be done in a compiled language. For example, interpreted
programmes can modify themselves by adding or changing functions at runtime. It
is also usually easier to develop applications in an interpreted environment because
you don’t have to recompile your application each time you want to test a small
section.

12.1.4 History of programming languages
Charles Babbage is often credited with designing the first computer-like machines,

which had several programmes written for them (in the equivalent of assembly
language) by Ada Lovelace. However, in the 1940s the first recognizably modern,
electrically powered computers were created.

Subsequent breakthroughs in electronic technology (transistors, integrated circuits,
and chips) drove the development of increasingly reliable and more usable computers.
The first widely used high level programming language was FORTRAN, developed
during 1954-57 by an IBM team led by John W. Backus. It is still widely used for
numercial work, with the latest international standard released in 2004.

In the late 1960s, the first object-oriented languages, such as SIMULA, emerged.
Logic languages became well known in the mid 1970s with the introduction of
PROLOG, a language used to programme artificial intelligence software. During the
1970s, procedural languages continued to develop with ALGOL, BASIC, PASCAL,
C, and Ada. SMALLTALK was a highly influential object-oriented language that led
to the merging of object-oriented and procedural languages in C++ and more recently
in JAVA. Although pure logic languages have declined in popularity, variations have
become vitally important in the form of relational languages for modern databases,
such as SQL (Structured Query Language).

Dennis Ritchie and Brian Kernighan developed the C programming language,
initially for DEC PDP-11 in 1970. Later with lead of Bjarne Stroustrup the
programming language C++ appeared starting from 1985 as the Object oriented
language vertically compatible with C. Sun Microsystems developed Java in 1995
which became very popular as the initial programming language taught at universities.
Microsoft presented the C# programming language, bringing garbage collection,
generic types, and introspection to a language that C++ programmers could learn
easily, in 2001. There are other languages such as Python, Visual Basic, etc..

12.1.5 Classification
Programming languages can be classified as either low-level languages or

highlevel languages. Low-level programming languages, or machine languages, are

203

the most basic type of programming languages and can be understood directly by a
computer. Machine languages differ depending on the manufacturer and model of
computer. High-level languages are programming languages that must first be
translated into a machine language before they can be understood and processed by
a computer. Examples of high-level languages are C, C++, PASCAL, and FORTRAN.
Assembly languages are intermediate languages that are very close to machine
language and do not have the level of linguistic sophistication exhibited by other high-
level languages, but must still be translated into machine language.

12.1.5.1 Machnie Languages
In machine languages, instructions are written as sequences of 1s and 0s, called

bits, that a computer can understand directly. An instruction in machine language
generally tells the computer four things :

1. Where to find one or two numbers or simple pieces of data in the main
computer memory (Random Access Memory, or RAM)

2. A simple operation to perform, such as adding the two numbers together,

3. Where in the main memory to put the result of this simple operation, and

4. Where to find the next instruction to perform.

While the computer in machine language eventually reads all executable
programmes, they are not all programmed in machine language. It is extremely
difficult to programme directly in machine language because the instructions are
sequences of 1s and 0s. A typical instruction in a machine language might read 10010
1100 1011 and mean add the contents of storage register A to the contents of storage
register B.

12.1.5.2 Assembly Language
Computer programmers use assembly languages to make machine-language

programmes easier to write. In an assembly language, each statement corresponds
roughly to one machine language instruction. An assembly language statement is
composed with the aid of easy to remember commands. The command to add the
contents of the storage register A to the contents of storage register B might be written
ADD B, A in a typical assembly language statement. Assembly languages share
certain features with machine languages. For instance, it is possible to manipulate
specific bits in both assembly and machine languages. Programmers use assembly
languages when it is important to minimize the time it takes to run a programme,
because the translation from assembly language to machine language is relatively
simple. Assembly languages are also used when some part of the computer has to be

204

controlled directly, such as individual dots on a monitor or the flow of individual
characters to a printer.

12.1.5.3 High-Level Languages
High-level languages are relatively sophisticated sets of statements utilizing words

and syntax from human language. They are more similar to normal human languages
than assembly or machine languages and are therefore easier to use for writing
complicated programmes. These programming languages allow larger and more
complicated programmes to be developed faster. However, high-level languages must
be translated into machine language by another programme called a compiler before
a computer can understand them. For this reason, programmes written in a high-level
language may take longer to execute and use up more memory than programmes
written in an assembly language.

12.1.5.3.1 Classification of High Level Languages
High-level languages are commonly classified as procedure-oriented, functional,

object-oriented, or logic languages. The most common high-level languages today are
procedure-oriented languages. In these languages, one or more related blocks of
statements that perform some complete function are grouped together into a programme
module, or procedure, and given a name such as “procedure A.” If the same sequence
of operations is needed elsewhere in the programme, a simple statement can be used
to refer back to the procedure. In essence, a procedure is just a mini-programme. A
large programme can be constructed by grouping together procedures that perform
different tasks. Procedural languages allow programmes to be shorter and easier for
the computer to read, but they require the programmer to design each procedure to
be general enough to be used in different situations.

Functional languages treat procedures like mathematical functions and allow them
to be processsed like any other data in a programme. This allows a much higher and
more rigorous level of programme construction. Functional languages also allow
variables—symbols for data that can be specified and changed by the user as the
programme is running—to be given values only once. This simplifies programming
by reducing the need to be concerned with the exact order of statement execution,
since a variable does not have to be redeclared, or restated, each time it is used in
a programme statement. Many of the ideas from functional languages have become
key parts of many modern procedural languages.

Object-oriented languages are outgrowth of functional languages. In object-
oriented languages, the code used to write the programme and the data processed by

205

the programme are grouped together into units called objects. Objects are further
grouped into classes, which define the attributes objects must have. A simple example
of a class is the class Book. Objects within this class might be Novel and Short Story.
Objects also have certain functions associated with them, called methods. The
computer accesses an object through the use of one of the object’s methods. The
method performs some action to the data in the object and returns this value to the
computer. Classes of objects can also be further grouped into hierarchies, in which
objects of one class can inherit methods from another class. The structure provided
in object-oriented languages makes them very useful for complicated programming
tasks.

Logic languages use logic as their mathematical base. A logic programme consists
of sets of facts and if-then rules, which specify how one set of facts may be deduced
from others, for example :

If the statement X is true, then the statement Y is false. In the execution of such
a programme, an input statement can be logically deduced from other statements in
the programme. Many artificial intelligence programmes are written in such languages.

12.1.6 Programme Translation Sequence
In developing a software programme to accomplish a particular task, the

programme developer chooses and appropriate language, develops the algorithm (a
sequence of steps, which when carried out in the order prescribed, achieve the desired
result), implements this algorithm in the chosen language (coding), then tests and
debugs the final result. There is also a probable maintenance phase.

When you write a programme in a source language such as Pascal or C, the
programme statements (in the source text file) needs to be converted into the binary
bit-patterns which make sense to the target processor (the processor on which the
software will be run). This process of conversion is called translation.

Source
Text

Module
Assembler

Object
Module

Source
Text

Module
Assembler

Object
Module

Source
Text

Compilor Object
Module

LINKER
LOAD

MODULE
Relocating

Loader

Machine Code Instructions

206

12.1.6.1 Assemblers

Assemblers are programmes that generate machine code instructions from a source
code programme written in assembly language. The features provided by an assembler
are :

Allows the programmer to use mnemonics when writing source code
programmes.
Variables are represented by symbolic names, not as memory locations
Symbolic code is easier to read and follow
Error checking is provided
Changes can be quickly and easily incorporated with a re-assembly
Programming aids are included for relocation and expression evaluation.

A mnemonic is an abbreviation for a machine code statement. During the
translation phase, each mnemonic is translated to an equivalent machine code
instruction.

MOV AX, offh

is translated to the binary bit patterns

10111000 (this means MOV AX)

11111111 (this is ff hexadecimal)

00000000 (this is 0)

Assemblers also provide keywords called pseudo-ops. These keywords provide
directions (hence they are also called assembler directives) to the assembler. Pseudo-
ops do not generate machine instructions. The following pseudo-op

DB ‘ab’

allocates and initializes a byte of storage for each character of the string, thus two
bytes will be allocated, one initialized to the character ‘a’ whilst the other byte would
be initialized to the character ‘b’.

The assembler does not normally generate executable code. An assembler
produces an object code file that must be further processed (linked) in order to generate
a file that can be executed directly.

12.1.6.2 Interpreter

The source code programme is run through a programme called an interpreter.
Each line of the programme is sent to the interpreter that converts it into equivalent
machine code instructions. These machine code instructions are then executed. The
next source line is then fetched from memory, converted and executed. This process
is repeated till the entire programme has been executed.

207

Examples of interpreted languages are BASIC (Beginners All Purpose Symbolic
Instruction Code) and Java.

12.1.6.3 Compiler

Compilers accept source programmes writtten in a high level language and
produce object code programmes that are then linked with standard libraries to produce
an executable file. Compilers generate code that is reasonably fast, but is target specific
(it only runs on a particular computer system)

The source programme is
Written using an editor. # include <stdio. h>
Most compiled main {
languages do not use printf (“Hello world/n’);
line numbers. The return 1;
example on the right is }

a C programme.

Once the programme has been written using the appropriate source statements, it is
then passed to a compiler that converts the entire programme into object code. The
object code cannot be run on the computer system, so the object code file is then sent to
a linker that combines it with libraries (other object code) to create an executable
programme. Because the entire programme is converted to machine code, it runs very
quickly.

12.1.6.4 Linker
The BASIC interpreter already has its own libraries for Input and Output (I/O),

so BASIC programmes don’t need linking. The source programme is converted
directly into executable code.

Compiled languages (as well as assembled) need both linking and loading. The
output of compilers and assemblers are stored in an intermediate format called object
code. This is stored as a file on disk. The object code must be combined with other
object code files or libraries (special object files) before execution.

The linker combines the programmes object code with the runtime object code
files (for handling files, screen output, the keyboard etc) into an executable format.
The types of files that exist at each phase of the programme translation sequence are,

myprog.c source code programme

myprog.obj object code produced by compiler

myprog.exe executable file produced by linker

208

12.1.6.5 Loaders
It is normally the responsibility of the Operating System to load and execute

files.

The part of the operating system that performs this function is called a loader.
There are two types of loaders, relocating and absolute.

The absolute loader is the simplest and quickest of the two. The loader loads the
file into memory at the location specified by the beginning portion (header) of the
file, and and then passes control to the programme. If the memory space specified
by the header is currently in use, execution cannot proceed, and the user must wait
until the requested memory becomes free.

The relocating loader will load the programme anywhere in memory, altering the
various addresses as required to ensure correct referencing. The decision as to where
in memory the programme is placed is done by the Operating System, not the
programmes header file. This is obviously more efficient, but introduces a slight
overhead in terms of a small delay whilst all the relative offsets are calculated. The
relocating loader can only relocate code that has been produced by a linker capable
of producing relative code. A loader is unnecessary for interpreted languages, as the
executable code is built up into the memory of the computer.

12.1.6.6 Locator
Programme locators convert the output of the linker (the executable file) into an

absolute load format file. This type of file will eventually reside in specific memory
locations, and is used to embed software into EPROM chips.

12.6.6.7 Cross Reference Utility (CRef)
These allow the programmer to generate a table that lists all symbols, labels,

names, modules etc. Each ocurrence is listed, and generally the source programme
is given line numbers to facilitate this process.

The Cref utility should detect data variables and assign symbols to them,
presenting a variety of formats (by name, module etc). The Cref table is useful in
debugging, as the programmer can ascertain in which modules a particular variable
is referenced.

12.6.6.8 Disassembler
Disassemblers convert machine code instructions into mnemonic opcodes and

operands, facilitating debugging at the machine code level. The more sophisticated
disassemblers provide for

Generation of symbols and labels
Cross reference tools

209

Disassembly of memory or disk files
Output of disassembly to disk file
Relocation information

12.6.6.9 Debuggers and Monitors
A monitor is a small programme that allows machine code access. A monitor

provides, Debuggers provide much the same facilities as monitors, but generally
provide a wider range of features,

provision for HLL source debugging
split screens, windowing
reference by symbols, module names and labels
radix changing
Dynamic tracing of hardware interrupts
Operating system calls and stack tracing

12.6.6.10 Cross Assembler
Cross assemblers allow a programmer to develop machine code programmes on

one computer system for another system (target). In this way, a programmer can
develop a machine code programme for a Macintosh computer system using an IBM-
PC. The cross-assembler running on the PC generates the machine code instructions
necessary for the Macintosh.

12.2 Algorithm

12.2.1 Introduction
The word algorithm comes from the name of the 9th century Persian mathematician

Abu Abdullah Muhammad bin Musa al-Khwarizmi. The word algorism originally
referred only to the rules of performing arthmetic using Arabic numerals but evolved
into algorithm by the 18th century. The word has now evolved to include all definite
procedures for solving problems or perfoming tasks.

The first case of an algorithm written for a computer was Ada Byron’s notes on
the analytical engine written in 1842, for which she is considered by many to be the
world’s first programmer. However, since Charles Babbage never completed his
analytical engine the algorithm was never implemented on it.

Algorithms are essential to the way computers process information, because a
computer programme is essentially an algorithm that tells the computer what specific
steps to perform (in what specific order) in order to carry out a specified task, such
as calculating employees’ paychecks or printing students’ report cards. Thus, an

210

algorithm can be considered to be any sequence of operations which can be performed
by a computer system.

Typically, when an algorithm is associated with processing information, data is
read from an input source or device, written to an output device, and/or stored for
further use. Stored data is regarded as part of the internal state of the entity performing
the algorithm.

For any such computational process, the algorithm must be rigorously defined,
specified in the way it applies in all possible circumstances that could arise. That is,
any conditional steps must be systematically dealt with, case-by-case; the criteria for
each case must be clear (and computable).

Because an algorithm is a precise list of precise steps, the order of computation
will almost always be cirtical to the functioning of the algorithm. Instructions are
usually assumed to be listed explicitly, and are described as starting ‘from the top’
and going ‘down to the bottom’, an idea that is described more formally by flow of
control.

12.2.2 Definition
In computer science an algorithm is a finite set of well-defined instructions for

accomplishing some task which, given an initial state, will terminate in a corresponding
recognizable end-state. Algorithms often have steps that repeat (iterate) or require
decisions (such as logic or comparison) until the task is completed. Correctly
performing an algorithm will not solve a problem if the algorithm is flawed or not
appropriate to the problem. Different algorithms may complete the same task with a
different set of instructions in more or less time,space, or effort than others.

Nowadays, a formal criterion for an algorithm is that it is a procedure that can
be implemented on a completely-specified Turing machine or one of the equivalent
formalisms. Turing’s initial interest was in the halting problem : deciding when an
algorithm describes a terminating procedure. In practical terms computational complexity
theory matters more : it includes the problems called NP-complete, which are generally
presumed to take more than polynomial time for any (deterministic) algorithm. NP
denotes the class of decision problems that can be solved by a non-deterministic Turing
machine in polynomial time.

Some writers restrict the definition of algorithm to procedures that eventually
finish. Others include procedures that could run forever without stopping, arguing that
some entity may be required to carry out such permanent tasks. In the latter case,
success can no longer be defined in terms of halting with a meaningful output. Instead,

211

terms of success that allow for unbounded output sequences must be defined. For
example, an algorithm that verifies if there are more zeros than ones in an infinite
random binary sequence must run forever to be effective. If it is implemented correctly,
however, the algorithm’s output will be useful : for as long as it examines the sequence,
the algorithm will give a positive response while the number of examined zeros
outnumber the ones, and a negative response otherwise. Success for this algorithm
could then be defined as eventually outputting only positive responses if there are
actually more zeros than ones in the sequence, and in any other case outputting any
mixture of positive and negative responses.

Certain countries, such as the USA, allow some algorithms to be patented,
provided a physical embodiment is possible.

12.2.3 Classes
There are many ways to classify algorithms. One way of classifying algorithms

is by their design methodology or paradigm. There is a certain number of paradigms,
each different from the other. Furthermore, each of these categories will include many
different types of algorithms. Some commonly found paradigms include :

Divide and conquer

Dynamic programming

The greedy method

Linear programming

Others

Another way to classify algorithms is by implementation. A recursive algorithm
is one that invokes (makes reference to) itself repeatedly unitl a certain condition
matches, which is a method comomon to functional programming. Algorithms are
usually discussed with the assumption that computers execute one instruction of an
algorithm at a time. Those computers are sometimes called serial computers. An
algorithm designed for such an environment is called a serial algorithm, as opposed
to parallel algorithms, which take advantage of computer architectures where several
processors can work on a problem at the same time. The various heuristic algorithms
would probably also fall into this category, as their name (e.g. a genetic algorithm)
describes its implementation.

References and Further Readings

1 2005 Algorithm (http://en.wikipedia.org/wiki/Algorithm). Visited last : 25/
10/2005.

212

2 2005 Programming language (http://en.wikipedia.org/wiki/Programming
language#Features_of_programming_language). Visited last : 21/10/
2005.

3 Lamont (Michael). Algorithm and data structure (http://linux.wku.edu/~lamonml/
kb.html). Visited last : 25/10/2005.

12.3 Exercise

1. Discuss general features of computer programming languages.

2. Describe different generations of programming languages.

3. Discuss programme translation sequence.

