
223

Unit 14 Search, Sorting Algorithm and Data
Structure

Structure

14.0 Objectives

14.1 Introduction

14.2 Data Structure

14.3 Search and Sorting Algorithm

14.4 Classification

14.5 Summaries of the seven most popular sorting algorithms

14.5.1 Bubble sort

14.5.2 Heap sort

14.5.3 Insertion sort

14.5.4 Merge sort

14.5.5 Quick sort

14.5.6 Selection sort

14.5.7 Shell sort

14.6 Memory Usage Patterns and Index sorting

14.7 Exercise

14.0 Objectives

The objectives of the Unit are to :

Present an overview of data structures

Explain the concept behind sorting algorithms

Identify the basic classes of sorting algorithms

Present an overview of certain sorting algorithms

Discuss the impacts of memory on the sorting algorithms

14.1 Introduction

Algorithms and data structures are the building blocks of computer programmes.
Common algorithms include searching a collection of data, sorting data, and numerical



224

operations such as matrix multiplication. Data structures are patterns for organizing
information, and often represent relationships between data values. Some common
data structures are called lists, arrays, records, stacks, queues, and trees.

One of the fundamental problems is ordering a list of items. There’s a plethora
of solutions to this problem, known as sorting algorithms. Some sorting algorithms
are simple and intuitive, such as the bubble sort. Others, such as the quick sort are
extremely complicated, but produce lightening-fast results.

14.2 Data Structures

A major area of study in computer science has been the storage of data for efficient
search and retrieval. The main memory of a computer is linear, consisting of a
sequence of memory cells that are numbered 0, 1, 2, in order.

Similarly, the simplest data structure is the one-dimensional, or linear, array, in
which array elements are numbered with consecutive integers and the element numbers
may access array contents. Data items (a list of names, for example) are often stored
in arrays, and efficient methods are sought to handle the array data.

A data structure is a way of storing data in a computer so that it can be used
efficiently. A well-designed data structure allows a variety of critical operations to
be performed on using as little resources, both execution time and memory space, as
possible. Different kinds of data structures are suited to different kinds of applications,
and some are highly specialized to certain tasks. Some common data structures are
called lists, arrays, records, stacks, queues, and trees. For example, B-trees are
particularly well-suited for implementation of databases, while routing tables rely on
networks of machines to function.

In the design of many types of programmes, the choice of data structures is a
primary design consideration,as experience in building large systems has shown that
the difficulty of implementation and the quality and performance of the final result
depends heavily on choosing the best data structure. After the data structures are
chosen, the algorithms to be used often become relatively obvious. Sometimes things
work in the opposite direction-data structures are chosen because certain key tasks
have algorithms that work best with particular data structuers. In either case, the choice
of appropriate data structures is crucial.

This insight has given rise to many formalized design methods and programming
languages in which data structures, rather than algorithms, are the key organizing
factor. Most languages feature some sort of module system, allowing data structures
to be safely reused in different applications by hiding their verified implementation



225

details behind controlled interfaces. Object-oriented programming languages such as
C++ and Java in particular use objects for this purpose.

The fundamental building blocks of most data structures are arrays, records,
discriminated unions, and references. There is some debate about whether data
structures represent implementations or interfaces. How they are seen may be a matter
of perspective. A data structure can be viewed as an interface between two functions
or as an implementation of methods to access storage that is organized according to
the associated data type.

14.3 Search and sorting algorithm

Search techniques must address, for example, how a particular name is to be found.
One possibility is to examine the contents of each element in turn. If the list is long,
it is important to sort the data first-in the case of names, to alphabetize them. Just
as the alphabetizing of names in a telephone book greatly facilitates their retrieval by
a user, the sorting of list elements significantly reduces the search time required by
a computer algorithm as compared to a search on an unsorted list. Many algorithms
have been developed for sorting data efficiently. These algorithms have application
not only to data structures residing in main memory but even more importantly to the
files that consititute information systems and databases.

In computer science a sorting algorithm is an algorithm that puts elements of a
list in a certain order. The most used orders are numerical order and lexicographical
order (alphabetic order). Efficient sorting is important to optimizing the use of other
algorithms (such as search and merge algorithms) that require sorted lists to work
correctly; it is also often useful for canonicalizing data and for producing human-
readable output.

14.4 Classification

The common sorting algorithms can be divided into two classes by the complexity
of their algorithms. There’s a direct correlation between the complexity of an algorithm
and its relative efficiency. Algorithmic complexity is generally written in a form
known as Big-O notation, where the O represents the complexity of the algorithm and
a value n represents the size of the set the algorithm is run against.

For example, O(n) means that an algorithm has a linear complexity. In other words,
it takes ten times longer to operate on a set of 100 items than it does on a set of 10
items (10 * 10 = 100). If the complexity was O(n2) (quadratic complexity), then it



226

would take 100 times longer to operate on a set of 100 items than it does on a set
of 10 items.

The two classes of sorting algorithms are O(n2), which includes the bubble,
insertion, selection, and shell sorts; and O(n log n) which includes the heap, merge,
and quick sorts.

In addition to algorithmic complexity, the speed of the various sorts can be
compared with empirical data. Since the speed of a sort can vary greatly depending
on what data set it sorts, accurate empirical results require several runs of the sort
be made and the results averaged together. The run times also depend on system
configurations.

14.5 Summaries of the seven most popular sorting algorithms

One of the fundamental problems of computer science is ordering a list of items.
There’s a plethora of solutions to this problem, known as sorting algorithms. Some
sorting algorithms are simple and intuitive, such as the bubble sort. Others, such as
the quick sort are extremely complicated, but produce lightening-fast results. Below
are descriptions to algorithms for seven of the most common sorting algorithms.

Bubble sort

Heap sort

Insertion sort

Merge sort

Quick sort

Selection sort

Shell sort

14.5.1 Bubble Sort
The bubble sort is the oldest and simplest sort in use. Bubble sort is the most

straightforward and simplistic method of sorting data that could actually be considered
for real world use. The algorithm starts at the beginning of the data set. It compares
the first two elements, and if the first is greater than the second, it swaps them. It
continues doing this for each pair of adjacent elements to the end of the data set. It
then starts again with the first two elements, repeating until no swaps have occurred
on the last pass. This algorithm, however, is vastly inefficient, and is rarely used except
in education (i.e., beginning programming classes). A slightly better variant is
generally called cocktail sort, and works by inverting the ordering criteria and the pass



227

direction on alternating passes. The bubble sort is generally considered to be the most
inefficient sorting algorithm in common usage.

A fair number of algorithm purists claim that the bubble sort should never be used
for any reason. Realistically, there isn’t a noticeable performance difference between
the various sorts for 100 items or less, and the simplicity of the bubble sort makes
it attractive. The bubble sort shouldn’t be used for repetitive sorts or sorts of more
than a couple hundred items.

14.5.2 Heap Sort
Heap sort is a member of the family of selection sorts. This family of algorithms

works by determining the largest (or smallest) element of the list, placing that at the
end (or beginning) of the list, then continuing with the rest of the list. Straight selection
sort runs in O(n2) time, but Heap sort accomplishes its task efficiently by using a data
structure called a heap, which is a binary tree where each parent is larger than either
of its children. Once the data list has been made into a heap, the root node is guaranteed
to be the largest element. It is removed and placed at the end of the list, and then
the remaining list is “heapified” again. This is repeated until there are no items left
in the heap and the sorted array is full. Elementary implementations require two arrays-
one to hold the heap and the other to hold the sorted elements.

To do an in-place sort and save the space the second array would require, the
algorithm below “cheats” by using the same array to store both the heap and the sorted
array. Whenever an item is removed from the heap, it frees up a space at the end of
the array that the removed item can be placed in.

The heap sort is the slowest of the O(n log n) sorting algorithms, but unlike the
merge and quick sorts it doesn’t require massive recursion or multiple arrays to work.
This makes it the most attractive option for very large data sets of millions of items.

As mentioned above, the heap sort is slower than the merge and quick sorts
but doesn’t use multiple arrays or massive recursion like they do. This makes it a
good choice for really large sets, but most modern computers have enough memory
and processing power to handle the faster sorts unless over a million items are being
sorted.

The “million item rule” is just a rule of thumb for common applications-high-end
servers and workstations can probably safely handle sorting tens of millions of items
with the quick or merge sorts.

14.5.3 Insertion Sort
Insertion sort is similar to bubble sort, but is more efficient as it reduces element

comparisons somewhat with each pass. An element is compared to all the prior



228

elements until a lesser element is found. In other words, if an element contains a value
less than all the previous elements, it compares the element to all the previous elements
before going on the the next comparison. Although this algorithm is more efficient
than the Bubble sort, it is still inefficient compared to many other sort algorithms since
it, and bubble sort, move elements only one position at a time. However, insertion
sort is a good choice for small lists (about 30 elements or fewer), and for nearly-sorted
lists. These observations can be combined to create a variant of insertion sort which
works efficiently for larger lists. This variant is called shell sort (see below).

The insertion sort works just like its name suggets-it inserts each item into its
porper place in the final list. The simplest implementation of this requires two list
structures-the source list and the list into which sorted items are inserted. To save
memory, most implementations use an in-place sort that works by moving the current
item past the already sorted items and repeatedly swapping it with the preceding item
until it is in place.

Like the bubble sort, the insertion sort has a complexity of O(n2). Although it
has the same complexity, the insertion sort is a little over twice as efficient as the
bubble sort.

The insertion sort is a good middle-of-the road choice for sorting lists of a few
thousand items or less. The algorithm is significantly simpler than the shell sort, with
only a small trade-off in efficiency. At the same time, the insertion sort is over twice
as fast as the bubble sort and almost 40% faster than the selection sort. The insertion
sort shouldn’t be used for sorting lists larger than a couple thousand items or repetitive
sorting of lists larger than a couple hundred items.

14.5.4 Merge Sort
Merge sort takes advantage of the ease of merging already sorted lists into a new

sorted list. It starts by comparing every two elements (i.e. 1 with 2, then 3 with 4...)
and swapping them if the first should come after the second. It then merges each of
the resulting lists of two into lists of four, then merges those lists of four, and so on;
until at last two lists are merged into the final sorted list.

The merge sort splits the list to be sorted into two equal halves, and places them
in separate arrays. Each array is recursively sorted, and then merged back together
to form the final sorted list. Like most recursive sorts, the merge sort has an algorithmic
complexity of O(n log n).

Elementary implementations of the merge sort make use of three arrays-one for
each half of the data set and one to store the sorted list in. The below algorithm merges



229

the arrays in-place, so only two arrays are required. There are non-recursive versions
of the merge sort, but they don’t yield any significant performance enhancement over
the recursive algorithm on most machines.

The merge sort is slightly faster than the heap sort for larger sets, but it requires
twice the memory of the heap sort because of the second array. This additional memory
requirement makes it unattractive for most purposes-the quick sort is a better choice
most of the time and the heap sort is a better choice for very large sets. Like the quick
sort, the merge sort is recursive which can make it a bad choice for applications that
run on machines with limited memory.

14.5.5 Quick Sort

Quicksort takes an element from an array and places it in its final position whilst
at the same time partitioning the array so that all elements above the partition element
are larger and all elements below are smaller. It then sorts each sub-array (partition)
recursively. The sort is usually implemented by scanning p from the bottom of an array
until an element larger than the partition element is found, then scanning down from
the top for an element smaller than the partition element; these two elements are then
swapped. When the scans from bottom and top meet the partition element is swapped
into its final position. Quicksort is an in place sort so it has modest memory
requirements and does not involve copying, if implemented carefully bad / worst case
performance is extermely unlikely, and quicksort is probably the fastest sorting
method. Quicksort runs in O(n log n) time.

As mentioned earlier, it’s massively recursive (which means that for very large
sorts) you can run the system out of stack space pretty easily. It’s also a complex
algorithm-a little too complex to make it practical for a one-time sort of 25 items,
for example. Ironically, the quick sort has horrible efficiency when operating on
lists that are mostly sorted in either forward or reverse order-avoid it in those
situations.

14.5.6 Selection Sort
The selection sort works by selecting the smallest unsorted item remaining in the

list, and then swapping it with the item in the next position to be filled. The selection
sort has a complexity of O(n2).

The selection sort is the unwanted stepchild of the n2 sorts. It yields a 60%
performance improvement over the bubble sort, but the insertion sort is over twice
as fast as the bubble sort and is just as easy to implement as the selection sort. In



230

short, there really isn’t any reason to use the selection sort-use the insertion sort
instead.

If you really want to use the selection sort for some reason, try to avoid sorting
lists of more than a 1000 items with it or repetitively sorting lists of more than a couple
hundred items.

14.5.7 Shell Sort

Donald Shell invented shell sort in 1959. It improves upon bubble sort and
insertion sort by moving out of order elements more than one position at a time. One
implementation can be described as arranging the data sequence in a two dimensional
array (in reality, the array is an appropriately indexed one dimensional array) and then
sorting the columns of the array using the Insertion sort method. Although this method
is inefficient for large data sets, it is one of the fastest algorithms for sorting small
numbers of elements (sets with less than 1000 or so elements). Another advantage
of this algorithm is that it requires relatively small amounts of memory. The shell sort
is the most efficient of the O(n2) class of sorting algorithms. Of course, the shell sort
is also the most complex of the O(n2) algorithms.

The algorithm makes multiple passes through the list, and each time sorts a number
of equally sized sets using the insertion sort. The size of the set to be sorted gets larger
with each pass through the list, until the set consists of the entire list. (Note that as
the size of the set increases, the number of sets to be sorted decreases). This sets the
insertion sort up for an almost-best case run each iteration with a complexity that
approaches O(n).

The items contained in each set are not contiguous-rather, if there are i sets then
a set is composed of every i-th element. For example, if there are 3 sets then the first
set would contain the elements located at positions 1, 4, 7 and so on. The second set
would contain the elements located at positions 2, 5, 8, and so on; while the third
set would contain the items located at positions 3, 6, 9, and so on.

The shell sort is by far the fastest of the N2 class of sorting algorithms. It’s more
than 5 times faster than the bubble sort and a little over twice as fast as the insertion
sort, its closest competitor.

The shell sort is still significantly slower than the merge, heap, and quick sorts,
but its relatively simple algorithm makes it a good choice for sorting lists of less than
5000 items unless speed is hypercritical. It’s also an excellent choice for repetitive
sorting of smaller lists.



231

14.5.8 Comparative Chart

The following table presents an overview of certain parameters of the above-
discussed sort algorithms.

Bubble Sort

Heap Sort

Insertion Sort

Merge Sort

Quick Sort

Selection Sort

Shell Sort

O(n2)

O(n log n)

O(n2)

O(n log n)

O(n log n)

O(n2)

O (n2)

Simplicity and ease of
implementation.

In-place and non-
recursive, making it a
good choice for
extremely large data
sets.

Relatively simple and
easy to implement.

Marginally faster than
the heap sort for larger
sets.

Extremely fast.

Simple and easy to
implement.

Efficient for medium
size lists.

Horribly inefficient.

Slower than the merge and
quick sorts.

Inefficient for large lists.

At least twice the memory
requirements of the other
sorts; recursive.

Very complex algorithm,
massively recursive.

Inefficient for large lists, so
similar to the more efficient
insertion sort that the
insertion sort should be used
in its place.

Somewhat complex algo-
rithm, not nearly as efficient
as the merge, heap, and
quick sorts.

Sorting Algorithms Class Advantages Limitations

14.6 Memory Usage Patterns and Index Sorting

When the size of the array to be sorted approaches or exceeds the available primary
memory, so that disk or swap space must be employed, the memory usage pattern
of a sorting algorithm becomes important, and an algorithm that might have been fairly
efficient when the array fit easily in RAM may become impractical. In this scenario,



232

the total number of comparisons becomes (relatively) less important, and the number
of times sections of memory must be copied or swapped to and from the disk can
dominate the performance characteristics of an algorithm.

For example, the popular recursive quicksort algorithm provides quite reasonable
performance with adequate RAM, but due to the recursive way that it copies portions
of the array it becomes much less practical when the array does not fit in RAM.

References and Further Readings

1 2005 Algorithm and data structure. (http://linux.wku.edu/~lamonml/algor).
Visited last : 26/10/2005.

2 1996 Majumder (Arun K) and Bhattacharyya (Pritimoy). database management
systems. New Delhi : Tata McGraw-Hill, 1996.

3 1994 Elmasri (Ramez) and Navathe (Shamkant B). Fundamentals of database
systems. California : Benjamin/Cummings, 1994.

4 1985 Data (CJ). An Introduction to database systems. 3rd ed. New Delhi :
Narosa, 1985.

5 1983 Date (CJ). Database : a primer. Reading : Addison-Wesley, 1983.

14.7 Exercise

1. Discuss different search algorithms.

2. What is an algorithm ?


