
104

Unit 6 Data Models

Structure

6.0 Objectives

6.1 Introduction

6.2 Evolution of Data Management Systems

6.2.1 Early Data Management Systems

6.2.2 Database Management System

6.3 Data Modeling

6.3.1 Hierarchical Model

6.3.2 Network Model

6.3.3 Relational Model

6.3.4 Entity-Attribute-Value (EAV) data model

6.3.5 Object-oriented Model

6.4 Normalization

6.5 Exercise

6.0 Objectives

The objectives of the Unit are to :

Understand early data management systems

Understand database approach for management of data system

Examine the concepts of data models

Discuss the basics of normalization

6.1 Introduction

Data is an important resource for any organization and applications. A database
can loosely be defined as a collection of data, which exists for providing information.
The data together with the system, which manage it, termed a database system. It is
important to differentiate a database from a database system. There are many types
of database management system-IRS (information retrieval system) and bibliographic
database system etc.

105

6.2 Evolution of Data Management Systems

6.2.1 Early Computer based Information System
The objective of any computer-based information handling system is the acquisition

and processing of data so that it can easily be placed into meaningful context. The
early information management programmes were developed independently without
adequate consideration for integrated acquisition, processing and reporting. In ealrly
phases of library automation, many institutes developed separate information processing
systems for Acquisition, Cataloguing, Serials Management, and Current Awareness
Services etc. Each separate application had its own master file, input data, and
application programmes.

This lack of integration of different application programmes developed for
management of large volume of information gave rise to various problems such as :

Data required for one application may have already been supplied partly or
fully for some other applications, such as input of author name in Acquistion
system and Cataloguing System.

Wastage of storage space by storing same data in multiple files for different
application programmes

Wastage of processing time

Occurrence of inconsistencies and other errors in data files. While updating
may take place in one file (Author name in Catalogue Master File), the same
data stored elsewhere may fail to be updated (in Acquisition File/Author-
Authority File), thereby causing data inconsistency.

Independent development of information management programmes for different
applications creates difficulties in integrating information.

The application programmes were developed and data files created along
functional boundaries. The unique key data items were not logically related
and could not be used for cross-reference purposes during processing and
retrieval of information. This seriously limited the information reporting
capabilities and generation of meaningful output by the systems.

6.2.2 Database Management System
Database Management System plays an important role to avoid problems

associated with early information management system and to readily achieve integration
of data. Currently, database is the most important component of any computer based
information system. A database may be defined as collections of inter related relevant
data stored together to serve multiple applications. A database management system

106

(DBMS) is collection of software/programmes for processing the database. The data
is stored in the database so that it is independent of the programmes using it.

6.2.2.2 Advantages
Some of the advantages that accrue from having an integrated/centralized database

are :

Redundancy can be reduced

Inconsistency can be avoided/reduced

Data can be shared

Standard can be enforced

Security can be enhanced

Integrity can be maintained

Conflicting requirements can be balanced

6.2.2.3 Bibliographic Database System
Bibliographic databases programmes combine many of the characteristics of

structured database programmes with some of those associated with textual database
programmes. In addition to sorting and selecting features, bibliographic database
programmes offer features that are designed specifically to deal with the predominance
of textual materials and rules for organizing citations/library catalogue that are
associated with the academic and research environments.

Data Entry forms.

Field types for specific types of bibliographic information

List fields or “Authority Lists”

Note fields

Word processor compatibility

“Keys” in documents cite works in the database

Emphasis on text in basic database functions

Catalogue records formatting

Bibliographic database programmes have the ability to rearrange the information
entered in the forms as citations. Citation formats the citation as you complete the
form in a “Preview box” in the publishing style or format you have selected, and also
allows you the option of generating formatted citations for all the works cited in a
document (using “keys”).

Data Entry forms : Unlike standard database programmes, bibliographic
database programmes provide predefined data entry forms. These “forms” are

107

specifically designed to hold information for different bibliographic types of
source works available in the library. Rather than entering information in
formatted form for a book, for instance, one will enter the basic components
for a book, along with keywords and a brief summary, in a form :

Author Majumder, Arun Kumar
Bhattacharyya, Pritimoy

Title Database management system

Edition 1st

Place New Delhi

Publisher Tata McGraw-Hill

Year of 1996
Publication

Pages 475

ISBN 0-07-462239-0

Keywords DBMS, Database Management

Bibliographic database offers a choice of forms that correspond to nearly every
type of resource material available in the library. Unlike standard database
programmes, bibliographic databases are able to use multiple forms in a single
view of the database. And unlike the online database collections, records in
a bibligraphic database can be edited to include keywords and notes or
abstracts that are important.

Field types for specific types of bibliographic information : In addition to
predefined forms, bibliographic database programmes have field “types” that
are peculiar to certain kinds of bibliographic data, such as names, titles,
keywords and notes or abstracts.

Names, for instance : author, editor, translators, and other names of
contributors, are entered with first and last names inverted, and the names
of individuals separated with semicolons : Majumder, Arun Kumar. This
allows bibliographic database programmes to convert names entered into
the database into any of the variety of special formats required for names.
The ability to reformat names, titles, pages, and journal names for differing
publishing styles is an essential characteristic of bibliographic database
programmes.

108

List fields or “Authority Lists” : In several fields (Keywords, Author,
Publisher, Geographic Place Name), index will automatically alphabetize
the terms that have been entered in the database, and display the list for
reference. One can use the list to enter names and terms consistently, or
to search for matching items in the database.

Note fields : In most bibliographic database programmes, every record has
a “Note” or abstract field that expands as you type notes, and lets you use
the keystrokes you are used to using in your word processor for entering
paragraphs.

Word processor compatibility : Most bibliographic database programmes
assume that the information entered into the database will be processed
using word processor, are thus designed with a tight integration to the
popular word processing systems.

“Keys” in documents cite works in the database.

Emphasis on text in basic database functions : Database programmes allow
you to manipulate, search and sort information in a variety of ways.

Display formatting : Bibliographic database programmes have the ability
to rearrange the information entered in the forms at the time of displaying.

Field Length : It is extermely difficult to predit/fix the filed length in
bibliographic database. A bibliographic database enables variable field
length

Repeatable Field : Multiple occurrence of data element in a field is very
natural in case of bibliographic database. A document may have more than
one author; subject index may assign more than one subject headings to a
given document. It is also not an efficient solution that one will fix the
maximum occurrence of a given field.

Data retrieval : Searching, sorting, and subset selection enhancements emphasize
the fact that bibliographic information is, primarily, textual data. So, for
instance, the sorting feature allows you to alphabetize references with a
“bibliographic sort”-ignoring leading articles in titles, and the selection feature
allows you to retrieve a subset of records containing a particular name or
keyword.

Data output : Ability to output data from the fields and records in the database
in different arrangements. The principle difference between bibliographic
database programmes and traditional database programmes is in the ability
to output or rearrange the information in bibliographic records.

109

6.3 Data Modeling

The goal of the data model is to make sure that all data objects required by the
application functions are competely and accurately represented. Because the data
model uses easily understood notations and natural language, it can be reviewed and
verified as correct by the end-users. The data model is also detailed enough to be used
by database developers as a ‘blueprint’ for building the physical database. The
information contained in the data model will be used to define relational tables,
primary and foreign keys, stored procedures, and triggers. A poorly designed database
will require more time in the long run.

There are two categories models :

Implementation Model : It is concerned with how the data are represented
in the database. Provides concepts that can be understood by

End users

Computer specialist

Hides some details of data storage

Can be implemented on a computer system in a direct way

Used in current commercial DBMS

Relational

Network

Hierarchical

Represents data using record structure (record-based)

Conceptual Model : It is concerned with what is represented in the database.
It provides concepts closer to the way many users perceive data. Uses concepts
such as entities, attributes, and relationships

Entity : a real world object or concepts (e.g. Project)

Attribute : properties that describes objects (e.g., Project_Name)

Relationships : an interaction or links among entities (e.g., works-on.)

Entity-Attribute-Value (EAV) data model

Object-oriented Data Model

6.3.1 Hierarchical Model
The hierarchical data model organizes data in a tree structure. There is a hierarchy

of parent and child data segments. This structure implies that a record can have

110

repeating information, generally in the child data segments. It collects all the instances
of a specific record together as a record type. These record types are the equivalent
of tables in the relational model, and with the individual records being the equivalent
of rows. To create links between these record types, the hierarchical model uses Parent
Child Relationships. These are a 1 : N mapping between record types. For example,
an organization might store information about an employee, such as name, employee
number, department, salary. The organization might also store information about an
employee’s children, such as name and date of birth. The employee and children data
forms a hierachy, were the employee data represents the parent segment and the
children data represents the child segment. If an employee has three children then there
would be three child segments associated with one employee segment. In a hierarchical
database the parent-child relationship is one to many. This restricts a child segment
to having only one parent segment. Hierarchical DBMSs were popular from the late
1960s, with the introduction of IBM’s Information Management System (IMS)
DBMS, through the 1970s.

Advantages

It promotes data security

It promotes data independence

It promotes data integrity (parent/child relationship)

Useful for large databases

Useful when users require a lot of transactions which are fixed over time

Suitable for large storage media

Disadvantages

Requires knowledge of the physical level of data storage.

Cannot handle the case where a part may belong to two or more
components

New relations or nodes result in complex system management tasks.

Programmers must be familiar with the appropriate navigation

Modification to data structure lead to significant modificantions to application
programmes

Does not provide the favoured ad-hoc query capability easily.

No specific or precise standard

111

6.3.2 Network Model
The popularity of the network data model coincided with the popularity of the

hierarchical data model. The network model permitted the modeling of many-to-many
relationships in data. In 1971, the Conference on Data Systems Languages (CODASYL)
formally defined the network model is the set construct. A set consists of an owner
record type, a set name, and a member record type. A member record type can have
that role in more than one set; hence the multi-parent concept is supported. An owner
record type can also be a member or owner in another set. The data model is a simple
network, and link and intersection record types (called junction records by IDMS) may
exist, as well as sets between them. Thus, the complete network of relationships is
represented by several pair wise sets; in each set some (one) record type is owner (at
the tail of the network arrow) and one or more record types are members (at the head
of the relationship arrow). Usually, a set defines a 1 : M relationship, although 1 : 1
is permitted. The CODASYL network model is based on mathematical set theory.

Advantages

Improves on hierarchical model
An application can access an owner record and all the member records in the
set.
The movement from one owner to another is eased.
Promotes data integrity because of the required owner-member relationship

Disadvantages

Difficult to design and use properly
The user and the programmer must be familiar with the data structure.
Does not promote structural independence
Navigational data access problems

6.3.3 Relational Model
RDBMS (relational database management system) is a database based on the

relational model developed by E.F. Codd. A relational database allows the definition
of data structures, storage and retrieval operations and integrity constraints. In such
a database the data and relations between them are organized in tables. A table is a
collection of records and each record in a table contains the same fields. Properties
of Relational Tables are :

Values are Atomic

Each Row is Unique

Column Values are of the same kind

112

The sequence of columns is insignificant

The sequence of rows is insignificant

Each column has a unique name

Certain fields may be designated as keys, which mean that searches for specific
values of that field will use indexing to speed them up. Where fields in two different
tables take values from the same set, a join operation can be performed to select related
records in the two tables by matching values in those fields. Often, but not always,
the fields will have the same name in both tables. For example, an “orders” table might
contain (customer-ID, product-code) pairs and a “products” table might contain
(product-code, price) pairs so to calculate a given customer’s bill you would sum the
prices of all products ordered by that customer by joining on the product-code fields
of the two tables. This can be extended to joining multiple table on multiple fields.
Because these relationships are only specified at retrieval time, relational databases
are classed as dynamic database management system. The relational database model
is based on the Relational Algebra.

Advantages

Structural independence : i.e. can concentrate on the logical view.

Data independence

SQL capability

Disadvantages

More hardware and operating system overhead : i.e. RDBMS may be slower.

Ease of use can be a liability : i.e. possible misuse.

Dr. E.F. Codd provided 12 rules that define the basic characteristics of a relational
database but implementation of these rules varies from vendor to vendor. In practice,
many database products are considered ‘relational’ even if they do not strictly adhere
to all 12 rules. A summary of Dr. Codd’s 12 rules is presented below :

Codd’s Rule #1. Data is presented in tables : A set of related tables forms
a database and all data is represented as tables. A table is a logical grouping
of related data in tabular form (rows and columns)

Each row describes an item (person, place or thing) and each row contains
information about a single item in the table

Each column describes a single characteristic about an item

Each value (datum) is defined by the intersection of a row and column

Data is atomic; there is no more than one value associated with the
intersection of a row and column

113

There is no hierarchical ranking of tables

The relationships among tables are logical; there are no physical
relationships among tables

Codd’s Rule #2. Data is logically accessible : A relational database does not
reference data by physical location; there is no such thing as the ‘fifth row
in the customers table’ Each piece of data must be logically accessible by
referencing1) a table; 2) a primary or unique key value; and 3) a column

Codd’s Rule #3. Nulls are treated uniformaly as unknown : Null must
always be interpreted as an unknown value. Null means no value has been
entered; the value is not known. ‘Unknown’ is not the same thing as an empty
string ("") or zero

Codd’s Rule #4. Database is self-describing : In addition to user data, a
relational database contains data about itself. There are two types of tables
in a RDBMS : user tables that contain the ‘working’ data and system tables
contain data about the database structure.

Codd’s Rule #5. A single language is used to communicate with the
database management system : There must be a single language that handles
all communication with the database management system.

Codd’s Rule #6. Provides alternatives for viewing data : A relational
database must not be limited to source tables when presenting data to the
user. Views are Virtual tables or abstractions of the source tables. A view is
an alternative way of looking at data from one or more tables. A view
definition does not duplicate data; a view is not a copy of the data in the
source tables. Onece created, a view can be manipulated in the same way as
a source table.

Codd’s Rule #7. Supports set-based or relational operations : Rows are
treated as sets for data manipulation operations (SELECT, INSERT, UPATE,
DELETE).

A relational database must support basic relational algebra operations
(selection, projection; & join) and set operations (union, intersection, division,
and difference).

Set operations and relational algebra are used to operate on ‘relations’ (tables)
to produce other relations.

A database that supports only row-at-a-time (navigational) operations does not
meet this requirement and is not considered ‘relational’.

114

Codd’s Rule #8. Physical data independence : Applications that access data
in a relational database must be unaffected by changes in the way the data
is physically stored (i.e., the physical structure).

An application that accesses data in a relational database contains only a basic
definition of the data (data type and length); it does not need to know how
the data is physically stored or accessed

Codd’s Rule #9. Logical data independence : Logical independence means
the relationships among tables can change without impairing the function of
applications and adhoc queries. The database schema or structure of tables
and relationships (logical) can change without having to re-create the database
or the applications that use it

Codd’s Rule #10. Data integrity is a function of the DBMS : In order to
be considered relational, data integrity must be an internal function of the
DBMS; not the application programme

Codd’s Rule #11. Supports distributed operations : Data in a relational
database can be stored centrally or distributed. Users can join data from tables
on different servers (distributed queries) and from other relational databases
(heterogeneous queries). Data integrity must be maintained regardless of the
number of copies of data and where it resides

Codd’s Rule #12. Data integrity cannot be subverted : The DBMS must
prevent data from being modified by machine language intervention

6.3.4 Entity-Attribute-Value (EAV) data model
The best way to understand the rationale of EAV design is to understand row

modeling (of which EAV is a generalized form). Consider a supermarket database that
must manage thousands of products and brands, many of which have a transitory
existence. Here, it is intuitively obvious that product names should not be hard-coded
as names of columns in tables. Instead, one stores product descriptions in a Products
table : purchases/sales of individual items are recorded in other tables as separate rows
with a product ID referencing this table. Conceptually an EAV design involves a single
table with three colums, an entity an attribute (such as species, which is actually a
pointer into the metadata table) and a value for the attribute (e.g., rat). In EAV design,
one row stores a single fact. In a conventional table that has one column per attribute,
by contrast, one row stores a set of facts. EAV design is appropriate when the number
of parameters that potentially apply to an entity is vastly more than those that actually
apply to an individual entity.

115

6.3.5 Object-Oriented Model
Object DBMSs add database functionality to object programming languages. They

bring much more than persistent storage of programming language objects. Object
DBMSs extend the semantics of the C++, Smalltalk and Java object programming
languages to provide full-featured database programming capability, while retaining
native language compatibility. A major benefit of this approach is the unification of
the application and database development into a seamless data model and language
envorinment. As a result, applications require less code, use more natural data
modeling, and code bases are easier to maintain. Object developers can write complete
database applications with a modest amount of additional effort.

In contrast to a relational DBMS where a complex data structure must be flattened
out to fit into tables or joined together from those tables to form the in-memory
structure, object DBMSs have no performance overhead to store or retrieve a web or
hierarchy of interrelated objects. This one-to-one mapping of object programming
language objects to database objects has two benefits over other storage approaches
: it provides higher performance management of objects, and it enables better
management of the complex interrelationships between objects. This makes object
DBMSs better suited to support applications such as financial portfolio, risk analysis
systems, telecommunications service applications, World Wide Web document
structures, design and manufacturing systems, and hospital patient record systems,
which have complex relationships between data.

6.4 Database Normalization Basics

Normalization is often brushed aside as a luxury that only academics have time
for. However, knowing the principles of normalization and applying them to your daily
database design tasks really isn’t all that complicated and it could drastically improve
the performance of the DBMS. The concept of normalization and a brief overview
of the most common normal forms have been presented.

Basically, normalization is the process of efficiently organizing data in a database.
There are two goals of the normalization process : eliminate redundant data (for
example, storing the same data in more than one table) and ensure data dependencies
(only storing related data in a table). Both of these reduce the amount of space a
database consumes and ensure that data is logically stored.

The database community has developed a series of guidelines for ensuring that
databases are normalized. These are referred to as normal forms and are numbered
from one (the lowest form of normalization, referred to as first normal form or 1NF)

116

through five (fifth normal form or 5NF). In practical applications, one will often see
1NF, 2NF, and 3NF along with the occasional 4NF. Fifth normal form is very rarely
seen.

The normal forms, it’s important to point out that they are guidelines and
guidelines only. Occasionally, it becomes necessary to stray from them to meet
practical business requirements. However, when variations take place, it’s extremely
important to evaluate any possible ramifications they could have on the system and
account for possible inconsistencies.

1. First normal form (1NF) sets the very basic rules for an organized database :
Eliminate duplicate columns from the same table.

Create separate tables for each group of related data and identify each row
with a unique column or set of columns (the primary key).

2. Second normal form (2NF) further addresses the concept of removing
duplicate data :

Meet all the requirements of the first normal form.
Remove subsets of data that apply to multiple rows of a table and place
them in separate tables.

Create relationships between these new tables and their predecessors
through the use of foreign keys.

3. Third normal form (3NF) goes one large step further :
Meet all the requirements of the second normal form.

Remove columns that are not dependent upon the primary key.

4. Finally, fourth normal form (4NF) has one additional requirement :

Meet all the requirements of the third normal form.
A relation is in 4NF if it has no multi-valued dependencies.

Remember, these normalization guidelines are cumulative. For a database
to be in 2NF, it must first fulfill all the criteria of a 1NF database.

References and Further Reading List

1 2005 Data structure (http://en. wikipedia. org/wiki/Data_structure).
sept 2005. Last visited :

2 2005 Chapple (Mike). Database normalization basics. (http://
databases.about.com/od/specificproducts/a/normalization.htm).
Visited last : 22/10/2005

3 2001 Codd’s 12 rules. (http://www.itworld.com/nl/db_mgr/05072001/).
Visited last : 21/10/2005

117

4 2000 Database models. (http://www.frick-cpa. com/ss7/Theory_Models.
asp#File). 2000. Visited last : 22/10/2005

5 1996 Majumder (Arun K) and Bhattacharyya (Pritimoy). Database
management systems.. New Delhi : Tata McGraw-Hill, 1996.

6 1994 Elmasri (Ramez) and Navathe (Shamkant B). Fundamentals of
database systems. California : Benjamin/Cummings, 1994.

7 1985 Data (CJ). An Introduction to database systems. 3rd ed. New Delhi :
Narosa, 1985.

8 1983 Date (CJ). Database : a primer. Reading : Addison-Wesley, 1983.

6.5 Exercise

1. Describe evolution of data management systems.

2. Briefly describe different data models.

3. Discuss basics of database normalization.

4. Discuss 12 rules that define the basic characteristics of a relational database.

